• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 127
  • 35
  • 28
  • 10
  • 7
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 274
  • 274
  • 274
  • 274
  • 64
  • 49
  • 48
  • 47
  • 47
  • 47
  • 46
  • 43
  • 42
  • 37
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The Right Ear Advantage in Response to Levels of Linguistic Complexity: A Functional Magnetic Resonance Imaging Study

Hyatt, Elizabeth 01 December 2015 (has links) (PDF)
The right ear advantage (REA) phenomenon has been utilized in clinical and research settings to study auditory processing disorders and linguistic lateralization. Previous research has established that the REA is not reliable in its measures within or between individuals. This is likely due to the influence of other variables, such as neuromaturation and attention. One variable that has not been studied in depth in this context is linguistic complexity. It was hypothesized that stimulus conditions with levels of linguistic complexity would elicit corresponding levels of temporal lobe activity. Understanding and controlling the variables that affect the REA will increase the reliability of the measure. Twenty right handed, neurotypical individuals aged 18-29 participated in a functional magnetic resonance imaging (fMRI) study that identified the regions and the extent of activation involved in listening to dichotic syllables, words, and sentences. Three durations of speech babble corresponding to the mean duration of the syllables, words, and sentences were used as control stimuli. Participants listened to dichotic stimuli and reported the stimulus they heard best during an fMRI scan. Reaction time (RT), ear preference, and fMRI data were recorded simultaneously and analyzed post hoc. Behavioral results showed that words had the shortest RTs and the greatest REA; syllables and sentences were similar to each other for both measures. Significant main effects were found in brain regions known to be involved in cognitive control of attention and linguistic processing. Words were associated with significant activation differences for ear preferences and minimal frontal lobe involvement for right ear preference. Syllables caused the least activity in the frontal lobe regions and less voxel activity in the temporal lobes than syllable-length babble. Sentences had the greatest voxel activity in the frontal and temporal lobe regions. It was concluded that words would best reflect the REA in clinical and experimental designs. Words had minimal involvement of frontal lobe regions indicating minimal cognitive control of attention and the largest discrepancies in activation patterns between right and left ear preferences that showed less cognitive power to process right ear stimuli in a dichotic listening situation.
112

The Functional Dissection of Motion Processing Pathways in the Human Visual Cortex Using fMRI-Guided TMS

Strong, Samantha Louise January 2015 (has links)
Motion-selectivity in human visual cortex comprises a number of different cortical loci including V1, V2, V3A, V3B, hV5/MT+ and V6 (Wandell et al., 2007). This thesis sought to investigate the specific functions of V3A and sub-divisions of hV5/MT+ (TO-1 and TO-2) by using transcranial magnetic stimulation (TMS) to transiently disrupt cortical activations within these areas during psychophysical tasks of motion perception. The tasks were chosen to coincide with previous non-human primate and human neuroimaging literature; translational, radial and rotational direction discrimination tasks and identification of the position of a focus of expansion. These results assert that TO-1 and TO-2 are functionally distinct subdivisions of hV5/MT+, as we have shown that both TO-1 and TO-2 are responsible for processing translational motion direction whilst only TO-2 is responsible for processing radial motion direction. In ipsilateral space, it was found that TO-1 and TO-2 both contribute to the processing of ipsilateral translational motion. Taken in a wider context, further results also suggested that these areas may form part of a network of cortical areas contributing to perception of self-motion (heading/egomotion), as TO-2 was not found to be responsible for processing the position of the central focus of expansion (imperative for self-direction). Instead, area V3A has been implicated as functionally responsible for processing this attribute of vision. Overall it is clear that TO-1, TO-2 and V3A have specific, distinct functions that contribute towards both parallel and serial motion processing pathways within the human brain. / Life Science Research
113

The Neural Correlates of Parasocial Relationships

Broom, Timothy W. 12 October 2018 (has links)
No description available.
114

CHARACTERISTICS OF AUDITORY PROCESSING ABILITIES AND UNILATERAL SENSORINEURAL HEARING LOSS: A PILOT STUDY

JONAS, CATHERINE EILEEN 11 June 2002 (has links)
No description available.
115

Functional and Structural Abnormalities Underlying Left Ear vs. Right Ear Advantage in Dichotic Listening: an fMRI and DTI Study

Farah, Rola 16 September 2013 (has links)
No description available.
116

Supraspinal Sensory Perception after Spinal Cord Injury and the Modulatory Factors Associated with Below-Level Allodynia

Detloff, Megan Ryan January 2009 (has links)
No description available.
117

MACHINE LEARNING-BASED ARTERIAL SPIN LABELING PERFUSION MRI SIGNAL PROCESSING

Xie, Danfeng January 2020 (has links)
Arterial spin labeling (ASL) perfusion Magnetic Resonance Imaging (MRI) is a noninvasive technique for measuring quantitative cerebral blood flow (CBF) but subject to an inherently low signal-to-noise-ratio (SNR), resulting in a big challenge for data processing. Traditional post-processing methods have been proposed to reduce artifacts, suppress non-local noise, and remove outliers. However, these methods are based on either implicit or explicit models of the data, which may not be accurate and may change across subjects. Deep learning (DL) is an emerging machine learning technique that can learn a transform function from acquired data without using any explicit hypothesis about that function. Such flexibility may be particularly beneficial for ASL denoising. In this dissertation, three different machine learning-based methods are proposed to improve the image quality of ASL MRI: 1) a learning-from-noise method, which does not require noise-free references for DL training, was proposed for DL-based ASL denoising and BOLD-to-ASL prediction; 2) a novel deep learning neural network that combines dilated convolution and wide activation residual blocks was proposed to improve the image quality of ASL CBF while reducing ASL acquisition time; 3) a prior-guided and slice-wise adaptive outlier cleaning algorithm was developed for ASL MRI. In the first part of this dissertation, a learning-from-noise method is proposed for DL-based method for ASL denoising. The proposed learning-from-noise method shows that DL-based ASL denoising models can be trained using only noisy image pairs, without any deliberate post-processing for obtaining the quasi-noise-free reference during the training process. This learning-from-noise method can also be applied to DL-based ASL perfusion prediction from BOLD fMRI as ASL references are extremely noisy in this BOLD-to-ASL prediction. Experimental results demonstrate that this learning-from-noise method can reliably denoise ASL MRI and predict ASL perfusion from BOLD fMRI, result in improved signal-to-noise-ration (SNR) of ASL MRI. Moreover, by using this method, more training data can be generated, as it requires fewer samples to generate quasi-noise-free references, which is particularly useful when ASL CBF data are limited. In the second part of this dissertation, we propose a novel deep learning neural network, i.e., Dilated Wide Activation Network (DWAN), that is optimized for ASL denoising. Our method presents two novelties: first, we incorporated the wide activation residual blocks with a dilated convolution neural network to achieve improved denoising performance in term of several quantitative and qualitative measurements; second, we evaluated our proposed model given different inputs and references to show that our denoising model can be generalized to input with different levels of SNR and yields images with better quality than other methods. In the final part of this dissertation, a prior-guided and slice-wise adaptive outlier cleaning (PAOCSL) method is proposed to improve the original Adaptive Outlier Cleaning (AOC) method. Prior information guided reference CBF maps are used to avoid bias from extreme outliers in the early iterations of outlier cleaning, ensuring correct identification of the true outliers. Slice-wise outlier rejection is adapted to reserve slices with CBF values in the reasonable range even they are within the outlier volumes. Experimental results show that the proposed outlier cleaning method improves both CBF quantification quality and CBF measurement stability. / Electrical and Computer Engineering
118

The role of peer rejection in adolescent depression : genetic, neural and cognitive correlates

Platt, Belinda J. January 2013 (has links)
Adolescent depression is a major public health problem, which is associated with educational problems, long-term psychiatric illness and suicide. One major source of stress during adolescence is peer rejection. In this thesis, I investigate the nature of the relationship between peer rejection and adolescent depression. In a review of longitudinal and experimental studies, I describe a bi-directional relationship between peer rejection and depressive symptoms. I then outline how genetic, cognitive and neural vulnerability may modify the effects of peer rejection on adolescent depression. Finally, I introduce five empirical chapters which test these hypotheses using different methodological approaches. The first study is a molecular genetic analysis of a sample of adolescents with and without a diagnosis of mood disorder. I report an interaction between diagnostic group, environmental stress (though not peer rejection specifically) and 5HTTLPR genotype on symptoms of anxiety, which supports the role of genetic factors in modifying the relationship between environmental stress and adolescent mood disorder. The second study is a behavioural study of negative attention biases in a typically developing sample of adolescents. I report a negative attention bias in adolescents with low (versus high) self-esteem. Although the data do not support a causal role for attention biases in adolescent depression, such biased cognitions could also moderate responses to peer rejection, maintaining affective symptoms. A final set of three fMRI datasets investigates how neural circuitry may influence depressed adolescents’ responses to peer rejection at three distinct stages: i) expectation of peer feedback, ii) the receipt of peer rejection, iii) emotion regulation of peer rejection. Data show distinct behavioural and neural differences between depressed patients and healthy controls during expectation and reappraisal of peer rejection, although heightened emotional reactivity immediately following the receipt of peer rejection did not differentiate behavioural or neural responses in adolescents with and without depression.
119

Affective Processing in Major Depressive Disorder: Neuroanatomical Correlates of State and Trait Abnormailities

Konarski, Jakub Z. 21 April 2010 (has links)
Patients with MDD demonstrate impairments in various components of affective processing, which are believed to persist in the remitted phase of the illness and are believed to underlie the vulnerability for future relapse. Despite advances in neuropsychiatry, the neuroanatomical site of action of various treatment modalities remains unclear, leaving clinicians without an algorithm to guide optimal treatment selection for individual patients. This thesis sought to characterize differences in brain activation during affective processing between MDD treatment responders (RS) and non-responders (NR) by combining clinical and neuroimaging variables in a repeat-measure functional magnetic resonance imaging (fMRI) investigation. We induced increases in positive and negative affect using visual stimuli under fMRI conditions in 21 MDD subjects and 18 healthy controls (HC). Based on previous neuroimaging investigations and preclinical animal data, we hypothesized that increased activation of the amygdala and the pregenual cingulate during negative affect induction (NAI), and decreased activity of the ventral striatum during positive affect induction (PAI), would differentiate ultimate NR from RS. Following the first scan, treatment with fluoxetine and olanzapine was initiated in the MDD group, with follow-up scans at one- and six-weeks thereafter. We hypothesized that decreases in depressive symptoms would be associated with decreased activation of the ventromedial prefrontal cortex (PFC) and amygdala during NAI and increased activation of the hippocampus during PAI. Eleven MDD subjects met criteria for clinical remission at study endpoint. Based on trait differences between MDD and HC, we hypothesized that differences observed during NAI would be limited to brain regions involved in regulation of the affective state, including the dorsolateral PFC and the anterior midcingulate cortex. The results of the analyses confirmed the a-prior hypotheses and additionally demonstrated differential activation of the insular, medial temporal, and premotor cortex during repeat PAI and NAI between HC, RS, and NR. These findings provide: i) a neuroanatomical target of successful antidepressant therapy during PAI/NAI; ii) a differential effect of depressive symptoms and dispositional affect on brain activation during PAI/NAI; and iii) an a-prior method to differentiate RS from NR, and iv) demonstrate the need for additional treatment to prevent relapse in the remitted state.
120

Mind your Language, All Right? Performance-dependent neural patterns of language

van Ettinger-Veenstra, Helene January 2013 (has links)
The main aim of this dissertation was to investigate the difference in neural language patternsrelated to language ability in healthy adults. The focus lies on unraveling the contributions of theright‐hemispheric homologues to Broca’s area in the inferior frontal gyrus (IFG) and Wernicke’s areain the posterior temporal and inferior parietal lobes. The functions of these regions are far from fullyunderstood at present. Two study populations consisting of healthy adults and a small group ofpeople with generalized epilepsy were investigated. Individual performance scores in tests oflanguage ability were correlated with brain activation obtained with functional magnetic resonanceimaging during semantic and word fluency tasks. Performance‐dependent differences were expectedin the left‐hemispheric Broca’s and Wernicke’s area and in their right‐hemispheric counterparts. PAPER I revealed a shift in laterality towards right‐hemispheric IFG and posterior temporal lobeactivation, related to high semantic performance. The whole‐brain analysis results of PAPER IIrevealed numerous candidate regions for language ability modulation. PAPER II also confirmed thefinding of PAPER I, by showing several performance‐dependent regions in the right‐hemispheric IFGand the posterior temporal lobe. In PAPER III, a new study population of healthy adults was tested.Again, the right posterior temporal lobe was related to high semantic performance. A decrease in lefthemisphericIFG activation could be linked to high word fluency ability. In addition, task difficultywas modulated. Increased task complexity showed to correlate positively with bilateral IFGactivation. Lastly, PAPER IV investigated anti‐correlated regions. These regions are commonly knownas the default mode network (DMN) and are normally suppressed during cognitive tasks. It wasfound that people with generalized epilepsy had an inadequate suppression of regions in the DMN,and showed poorer performance in a complex language test. The results point to neural adaptabilityin the IFG and temporal lobe. Decreased left‐lateralization of the IFG and increased rightlateralizationof the posterior temporal lobe are proposed as characteristics of individuals with highlanguage ability.

Page generated in 0.4195 seconds