Spelling suggestions: "subject:"fundamental limit"" "subject:"dundamental limit""
1 |
Cognitive radios : fundamental limits and applications to cellular and wireless local networks / Fundamental limits and applications to cellular and wireless local networksChung, Goochul 12 July 2012 (has links)
An ever increasing number of wirelessly-enabled applications places a very high demand on stringent spectral resources. Cognitive radios have the potential of enhancing spectral efficiency by improving the usage of channels that are already licensed for a specific purpose. Research on cognitive radios involves answering questions such as: how can a cognitive radio transmit at a high data rate while maintaining the same quality of service for the licensed user? There are multiple forms of cognition studied in literature, and each of these models must be studied in detail to understand its impact on the overall system performance. Specifically, the information-theoretic capacity of such systems is of great interest. Also, the design of cognitive radio is necessary to achieve those capacities in real applications.
In this dissertation, we formulate different problems that relate to the performance of such systems and methods to increase their efficiency. This dissertation discusses, firstly, the means of "sensing" in cognitive systems, secondly, the optimal resource allocation algorithms for interweave cognitive radio, and finally, the fundamental limits of partially and overly cognitive
overlay systems. / text
|
2 |
Fundamental Limits on Antenna Size for Frequency and Time Domain ApplicationsYang, Taeyoung 15 October 2012 (has links)
As ubiquitous wireless communication becomes part of life, the demand on antenna miniaturization and interference reduction becomes more extreme. However, antenna size and performance are limited by radiation physics, not technology.
In order to understand antenna radiation and energy storage mechanisms, classical and alternative viewpoints of radiation are discussed. Unlike the common sense of classical antenna radiation, it is shown that the entire antenna fields contribute to both radiation and energy storage with varying total energy velocity during the radiation process. These observations were obtained through investigating impedance, power, the Poynting vector, and energy velocity of a radiating antenna.
Antenna transfer functions were investigated to understand the real-world challenges in antenna design and overall performance. An extended model, using both the singularity expansion method and spherical mode decomposition, is introduced to analyze the characteristics of various antenna types including resonant, frequency-independent, and ultra-wideband antennas. It is shown that the extended model is useful to understand real-world antennas.
Observations from antenna radiation physics and transfer function modeling lead to both corrections and extension of the classical fundamental-limit theory on antenna size. Both field and circuit viewpoints of the corrected limit theory are presented. The corrected theory is extended for multi-mode excitation cases and also for ultra-wideband and frequency-independent antennas.
Further investigation on the fundamental-limit theory provides new innovations, including a low-Q antenna design approach that reduces antenna interference issues and a generalized approach for designing an antenna close to the theoretical-size limit. Design examples applying these new approaches with simulations and measurements are presented.
The extended limit theory and developed antenna design approaches will find many applications to optimize compact antenna solutions with reduced near-field interactions. / Ph. D.
|
Page generated in 0.1151 seconds