• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fungicides used to control septoria ampelina berk & curt leaf spot of vitis labrusca L. cv. 'concord'

Utami, Listiatie Budi January 1995 (has links)
Septoria ampelina causes a disease of grapes known as septoria leaf spot. This study was done to determined which of the fungicides currently used to control the various diseases of grapes, plus one experimental fungicide, is the most effective in controlling septoria leaf spot. Both in vitro and in vivo methods were used. In vivo studies examined the systemic and/or protectant activities of the fungicides. The systemic and protectant fungicides included Bayleton, Benlate, Elite (an experimental fungicide), Nova, Rovral and Rubigan. The protectant only fungicides included Captan, Dithane and Kocide. In vitro tests to determine the minimum inhibitory concentration (MIC) for each fungicide (e.g., the concentration of the fungicide that prevents the fungus from forming colonies on the PEA-fungicide medium), indicate that Benlate (MIC = 0.1 ppm) and Elite (MIC = 1.0 ppm) have the greatest potential'to control septoria leaf spot of grape. These are followed by Dithane, Nova and Rubigan (MIC = 2.0), which in turn are followed by Bayleton and Captan (MIC = 50.0 ppm). Kocide and Rovral did not inhibit fungal growth at concentrations up through 100 ppm. Although all the fungicides tested significantly reduced the incidence of septoria leaf spot in vivo, Benlate and Elite were the most effective fungicides (both in systemic and protectant application). / Department of Biology
2

Sensitivity and resistance of Sclerotinia minor to fungicides for control of Sclerotinia blight of peanut

Brenneman, Timothy Branner January 1986 (has links)
Sclerotinia blight, caused by <i>Sclerotinia minor</i>, is a severe disease of peanut in Virginia. Vinclozolin (V), iprodione (I), dicloran (D), and pentachloronitrobenzene (PCNB) were evaluated for their fungitoxicity to <i>S. minor</i>. The mean ED₅₈ values for five isolates were found to be 0.07, 0.11, 0.91, and 1.27 μg/ml, for V, I, D, and PCNB, respectively, on fungicide-amended glucose yeast-extract agar (GYEA). Fungicide-resistant growth sectors developed on media amended with I or V. Nine such strains occurred; they were capable of growth on GYEA amended with up to 1000 μg/ml of I or V, and were cross-resistant to D or PCNB. Resistance was maintained in all but two strains after repeated culture in the absence of fungicide for 3 yr. In field microplots, two resistant strains were pathogenic to peanut and survived as well as a fungicide-sensitive field isolate. D, I and V were applied to peanuts in the microplots for 3 yr at total annual rates of 8.41, 3.36, and 2.52 kg/ha, respectively. Disease severity caused by the resistant strains was suppressed 19, 33, and 87% by D, I, and V, respectively, as compared to 15, 24, and 76% for the sensitive isolate. Isolates recovered from tissue biopsies still grew on fungicide-amended GYEA indicating that <i>in vitro</i> and <i>in vivo</i> resistance are not equivalent in this case. Fungicide treatments reduced sclerotial populations of all strains, and reduced the viability of sclerotia from sensitive but not resistant strains. Fungicide-resistant strains were capable of surviving and competing pathogenically in microplots infested with equal numbers of sclerotia from a sensitive and a resistant strain; this trend was enhanced by fungicide applications. A survey of 763 isolates from fields treated with these fungicides failed to detect resistant strains. One fungicide-resistant isolate was recovered from an iprodione-treated microplot originally infested with a sensitive field isolate. A technique utilizing excised peanut stems was devised to evaluate isolate pathogenicity, cultivar resistance to the disease, susceptibility of different age peanut tissues, and fungicide persistence on peanut stems in the field. The method was also used to screen fungicides; results verified previous findings which indicated that <i>in vitro</i> resistance is not equivalent to <i>in vivo</i> resistance. Resistance to these fungicides may eventually become a field problem, but with correct management they should provide years of disease control. / Ph. D. / incomplete_metadata

Page generated in 0.0963 seconds