• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved architectures for a fused floating-point add-subtract unit

Sohn, Jongwook 27 February 2012 (has links)
This report presents improved architecture designs and implementations for a fused floating-point add-subtract unit. The fused floating-point add-subtract unit is useful for DSP applications such as FFT and DCT butterfly operations. To improve the performance of the fused floating-point add-subtract unit, the dual path algorithm and pipelining technique are applied. The proposed designs are implemented for both single and double precision and synthesized with a 45nm standard-cell library. The fused floating-point add-subtract unit saves 40% of the area and power consumption and the dual path fused floating-point add-subtract unit reduces the latency by 30% compared to the traditional discrete floating-point add-subtract unit. By combining fused operation and the dual path design, the proposed floating-point add-subtract unit achieves low area, low power consumption and high speed. Based on the data flow analysis, the proposed fused floating-point add-subtract unit is split into two pipeline stages. Since the latencies of two pipeline stages are fairly well balanced the throughput of the entire logic is increased by 80% compared to the non-pipelined implementation. / text
2

Improved architectures for fused floating-point arithmetic units

Sohn, Jongwook 05 November 2013 (has links)
Most general purpose processors (GPP) and application specific processors (ASP) use the floating-point arithmetic due to its wide and precise number system. However, the floating-point operations require complex processes such as alignment, normalization and rounding. To reduce the overhead, fused floating-point arithmetic units are introduced. In this dissertation, improved architectures for three fused floating-point arithmetic units are proposed: 1) Fused floating-point add-subtract unit, 2) Fused floating-point two-term dot product unit, and 3) Fused floating-point three-term adder. Also, the three fused floating-point units are implemented for both single and double precision and evaluated in terms of the area, power consumption, latency and throughput. To improve the performance of the fused floating-point add-subtract unit, a new alignment scheme, fast rounding, two dual-path algorithms and pipelining are applied. The improved fused floating-point two-term dot product unit applies several optimizations: a new alignment scheme, early normalization and fast rounding, four-input leading zero anticipation (LZA), dual-path algorithm and pipelining. The proposed fused floating-point three-term adder applies a new exponent compare and significand alignment scheme, double reduction, early normalization and fast rounding, three-input LZA and pipelining to improve the performance. / text

Page generated in 0.1456 seconds