• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cost-constrained project scheduling with task durations and costs that may increase over time: demonstrated with the U.S. Army future combat systems

Grose, Roger T. 06 1900 (has links)
Approved for public release, distribution is unlimited / We optimize long-term project schedules subject to annual budget constraints, where the duration and cost of each task may increase as the project progresses. Initially, tasks are scheduled without regard to budgets and the project completion time is minimized. Treating the task durations as random variables, we then use simulation to describe the distribution of the project completion time. Next, we minimize the completion time under budget constraints with fixed task durations, where budget violations are tolerated albeit with penalties. Annual reviews are then introduced, which allow underway tasks to be delayed or monthly budgets to be increased. We obtain estimates of the completion time of the project and its final cost under each of these scenarios. The U.S. Army Future Combat Systems (FCS) is used for illustration. FCS is a suite of information technologies, sensors, and command systems with an estimated acquisition cost of over $90 billion. The U.S. General Accounting Office found that FCS is at risk of substantial cost overrun and delay. We analyze three schedule plans for FCS to identify which can be expected to deliver the earliest completion time and the least cost. / Major, Australian Army

Page generated in 0.0533 seconds