• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Frequency Reconfigurable Antenna Array for MM-Wave 5G Mobile Handsets

Ojaroudi Parchin, Naser, Al-Yasir, Yasir I.A., Abdulkhaleq, Ahmed M., Elfergani, Issa T., Rayit, A., Noras, James M., Rodriguez, Jonathan, Abd-Alhameed, Raed 20 September 2018 (has links)
Yes / This study proposes a compact design of frequency-reconfigurable antenna array for fifth generation (5G) cellular networks. Eight compact discrete- fed slot antennas are placed on the top portion of a mobile phone printedcircuit- board (PCB) to form a beam-steerable array. The frequency response of the antenna can be reconfigured to operate at either 28 GHz or 38 GHz, two of the candidate frequency bands for millimeter-wave (MM-Wave) 5G communications. The reconfigurability function of the proposed design can be achieved by implementing and biasing a pair of diodes across each T-shaped slot antenna element. Rogers RT 5880 with thickness of 0.508 mm and properties of ε = 2.2 and δ = 0.0009 has been used as the antenna substrate. The antenna element is very compact in size with a good end-fire radiation pattern in the frequency bands of interest. The proposed beam-steerable array provides very good 3D coverage. The simulation results show that the proposed design provides some good characteristics fitting the need of the 5G cellular communications. / Innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424, UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E022936/1
2

Cognitive radio systems in LTE networks

Al-Dulaimi, Anwer January 2012 (has links)
The most important fact in the mobile industry at the moment is that demand for wireless services will continue to expand in the coming years. Therefore, it is vital to find more spectrums through cognitive radios for the growing numbers of services and users. However, the spectrum reallocations, enhanced receivers, shared use, or secondary markets-will not likely, by themselves or in combination, meet the real exponential increases in demand for wireless resources. Network operators will also need to re-examine network architecture, and consider integrating the fibre and wireless networks to address this issue. This thesis involves driving fibre deeper into cognitive networks, deploying microcells connected through fibre infrastructure to the backbone LTE networks, and developing the algorithms for diverting calls between the wireless and fibre systems, introducing new coexistence models, and mobility management. This research addresses the network deployment scenarios to a microcell-aided cognitive network, specifically slicing the spectrum spatially and providing reliable coverage at either tier. The goal of this research is to propose new method of decentralized-to-distributed management techniques that overcomes the spectrum unavailability barrier overhead in ongoing and future deployments of multi-tiered cognitive network architectures. Such adjustments will propose new opportunities in cognitive radio-to-fibre systematic investment strategies. Specific contributions include: 1) Identifying the radio access technologies and radio over fibre solution for cognitive network infrastructure to increase the uplink capacity analysis in two-tier networks. 2) Coexistence of macro and microcells are studied to propose a roadmap for optimising the deployment of cognitive microcells inside LTE macrocells in the case of considering radio over fibre access systems. 3) New method for roaming mobiles moving between microcells and macrocell coverage areas is proposed for managing spectrum handover, operator database, authentication and accounting by introducing the channel assigning agent entity. The ultimate goal is to reduce unnecessary channel adaptations.
3

Application priority framework for fixed mobile converged communication networks

Chaudhry, Saqib Rasool January 2011 (has links)
The current prospects in wired and wireless access networks, it is becoming increasingly important to address potential convergence in order to offer integrated broadband services. These systems will need to offer higher data transmission capacities and long battery life, which is the catalyst for an everincreasing variety of air interface technologies targeting local area to wide area connectivity. Current integrated industrial networks do not offer application aware context delivery and enhanced services for optimised networks. Application aware services provide value-added functionality to business applications by capturing, integrating, and consolidating intelligence about users and their endpoint devices from various points in the network. This thesis mainly intends to resolve the issues related to ubiquitous application aware service, fair allocation of radio access, reduced energy consumption and improved capacity. A technique that measures and evaluates the data rate demand to reduce application response time and queuing delay for multi radio interfaces is proposed. The technique overcomes the challenges of network integration, requiring no user intervention, saving battery life and selecting the radio access connection for the application requested by the end user. This study is split in two parts. The first contribution identifies some constraints of the services towards the application layer in terms of e.g. data rate and signal strength. The objectives are achieved by application controlled handover (ACH) mechanism in order to maintain acceptable data rate for real-time application services. It also looks into the impact of the radio link on the application and identifies elements and parameters like wireless link quality and handover that will influence the application type. It also identifies some enhanced traditional mechanisms such as distance controlled multihop and mesh topology required in order to support energy efficient multimedia applications. The second contribution unfolds an intelligent application priority assignment mechanism (IAPAM) for medical applications using wireless sensor networks. IAPAM proposes and evaluates a technique based on prioritising multiple virtual queues for the critical nature of medical data to improve instant transmission. Various mobility patterns (directed, controlled and random waypoint) has been investigated and compared by simulating IAPAM enabled mobile BWSN. The following topics have been studied, modelled, simulated and discussed in this thesis: 1. Application Controlled Handover (ACH) for multi radios over fibre 2. Power Controlled Scheme for mesh multi radios over fibre using ACH 3. IAPAM for Biomedical Wireless Sensor Networks (BWSN) and impact of mobility over IAPAM enabled BWSN. Extensive simulation studies are performed to analyze and to evaluate the proposed techniques. Simulation results demonstrate significant improvements in multi radios over fibre performance in terms of application response delay and power consumption by upto 75% and 15 % respectively, reduction in traffic loss by upto 53% and reduction in delay for real time application by more than 25% in some cases.
4

Radio network management in cognitive LTE-femtocell Systems

Al-Rubaye, Saba January 2013 (has links)
There is a strong uptake of femtocell deployment as small cell application platforms in the upcoming LTE networks. In such two-tier networks of LTE-femtocell base stations, a large portion of the assigned spectrum is used sporadically leading to underutilisation of valuable frequency resources. Novel spectrum access techniques are necessary to solve these current spectrum inefficiency problems. Therefore, spectrum management solutions should have the features to improve spectrum access in both temporal and spatial manner. Cognitive Radio (CR) with the Dynamic Spectrum Access (DSA) is considered to be the key technology in this research in order to increase the spectrum efficiency. This is an effective solution to allow a group of Secondary Users (SUs) to share the radio spectrum initially allocated to the Primary User (PUs) at no interference. The core aim of this thesis is to develop new cognitive LTE-femtocell systems that offer a 4G vision, to facilitate the radio network management in order to increase the network capacity and further improve spectrum access probabilities. In this thesis, a new spectrum management model for cognitive radio networks is considered to enable a seamless integration of multi-access technology with existing networks. This involves the design of efficient resource allocation algorithms that are able to respond to the rapid changes in the dynamic wireless environment and primary users activities. Throughout this thesis a variety of network upgraded functions are developed using application simulation scenarios. Therefore, the proposed algorithms, mechanisms, methods, and system models are not restricted in the considered networks, but rather have a wider applicability to be used in other technologies. This thesis mainly investigates three aspects of research issues relating to the efficient management of cognitive networks: First, novel spectrum resource management modules are proposed to maximise the spectrum access by rapidly detecting the available transmission opportunities. Secondly, a developed pilot power controlling algorithm is introduced to minimise the power consumption by considering mobile position and application requirements. Also, there is investigation on the impact of deploying different numbers of femtocell base stations in LTE domain to identify the optimum cell size for future networks. Finally, a novel call admission control mechanism for mobility management is proposed to support seamless handover between LTE and femtocell domains. This is performed by assigning high speed mobile users to the LTE system to avoid unnecessary handovers. The proposed solutions were examined by simulation and numerical analysis to show the strength of cognitive femtocell deployment for the required applications. The results show that the new system design based on cognitive radio configuration enable an efficient resource management in terms of spectrum allocation, adaptive pilot power control, and mobile handover. The proposed framework and algorithms offer a novel spectrum management for self organised LTE-femtocell architecture. Eventually, this research shows that certain architectures fulfilling spectrum management requirements are implementable in practice and display good performance in dynamic wireless environments which recommends the consideration of CR systems in LTE and femtocell networks.

Page generated in 0.0537 seconds