Spelling suggestions: "subject:"fuzzy rule cases"" "subject:"fuzzy rule bases""
1 |
時間數列的模糊識別 / Fuzzy Identification in Time Series孟慶宇 Unknown Date (has links)
時間數列的模式識別在近年來逐漸受到注意。因為根據時間數列所產生的走勢型態可以作為判斷事件發生與預測未來的基礎。雙線性模式是由ARMA模式所延伸,所以不易與ARMA做一區別。本文就針對這類的問題,提出解決的方法。
在本文中,我們應用統計檢定結合模糊理論,建構一個整合式的識別過程。由特徵擷取,找出各種模式之間的差異,再藉由其中的異同建立模糊規則庫。接下來計算出時間數列相對應的特徵屬性,最後由模糊規則庫做出判斷。我們以台積電與聯電的每日收盤價格與成交張數為例,識別的結果與一般的認知相同。 / Identification of time series model gets more and more attention, because we can analyze the events happened and forecast what will occur in the future based on the accurate model. Bilinear time is extended by ARMA model, so it is hard to distinguish bilinear model and ARMA model. This paper focuses on this type of subject and proposes some possible way to solve.
In this paper, we combine statistical tests and fuzzy methods to build a "composite" identification process. First, we try to find out differences between each model by featuring and building the fuzzy rule bases by the differences. Then, we calculate the membership of feature according the time series data. Finally, we make our decision according to the fuzzy rule bases.
|
2 |
Evolsys: um ambiente de configuração e análise de algoritmos evolutivos para sintonia da base de regras fuzzy do sistema de controle de um FMSSantana, Maykon Rocha 14 December 2015 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-01-03T12:57:22Z
No. of bitstreams: 1
DissMRS.pdf: 7075641 bytes, checksum: 8e6f815544b7f6f2ce4a1a5a47b25482 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2017-01-16T16:33:09Z (GMT) No. of bitstreams: 1
DissMRS.pdf: 7075641 bytes, checksum: 8e6f815544b7f6f2ce4a1a5a47b25482 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2017-01-16T16:33:38Z (GMT) No. of bitstreams: 1
DissMRS.pdf: 7075641 bytes, checksum: 8e6f815544b7f6f2ce4a1a5a47b25482 (MD5) / Made available in DSpace on 2017-01-16T16:33:48Z (GMT). No. of bitstreams: 1
DissMRS.pdf: 7075641 bytes, checksum: 8e6f815544b7f6f2ce4a1a5a47b25482 (MD5)
Previous issue date: 2016-12-14 / Não recebi financiamento / In recent years, companies have used Artificial Intelligence (AI) techniques to facilitate the decisionmaking process in manufacturing systems. The use of these techniques allows increased performance of Flexible Manufacturing System (FMS). The automation of the process using computational resources allows a deeper analysis of the system conditions, which sometimes result in a better decision taking. In this sense, the Fuzzy Logic has been engaged to carry out this task, because it has the characteristic of dealing easily with inaccurate information and encoding knowledge specialist in Fuzzy rules. However, as soon as the system complexity increases, the task of generating a Fuzzy Rule Base (FRB) appropriate to the proposed system becomes increasingly difficult. To assist this process of generation of the FRB, several techniques can be used and among them stand out the search technique called Evolutionary Algorithm (EA). The EA is used, for example, for tuning the FRB of the FMS through the reduction of the optimization variables values
as Makespan or Tardiness. In the case of variable called Makespan, the tuning occurs when the EA generates an FRB that reduces the makespan values of a FMS. However, the construction of the EA that effectively generates a tuning FRB is not trivial. It is required to be in the process, the construction of various EA with different selection methods and different mutation rates among other settings until an appropriate EA for a given situation appears. Therefore, in this study we aim to build an environment configuration and performance analysis of EAs in order to define the tuning FRB of the Fuzzy Control System of an FMS, i.e., it is intended to investigate how the EA ideal parameter scenario used for tuning the FRB of the said control system. In this study, the used EA was an extension of Genetic Algorithm (GA). For implementing the proposal, an evolutionary system for configuration and analysis of this variant of the GA was created. In this system, entitled "EvolSys - Evolutionary System" parameters of the system as Number of Input Variables of FRB, Number of Output Variables of FRB, Population Size, Mutation Rate and the EA Crossover Rate, among others are configured and then, one FRB is generated. Using this, there is an EA analysis of the possibility for choosing a FRB that will provide the reduction of makespan in FMS. Consequently, through this study, we may conclude that the use of EAs in collaboration with Fuzzy system may become an important tool for turning the system responsibility to the sequences of an FMS operation. Accordingly, the environment created meets the configuration step and analysis of EAs. / Nos últimos anos, empresas tem usado técnicas de Inteligência Artificial (AI) para auxiliar o processo de tomada de decisão em sistemas de manufatura. O uso dessas técnicas possibilita o aumento do desempenho dos Sistemas Flexíveis de Manufatura (FMS), uma vez que a automatização do processo com o uso de recursos computacionais permite uma análise mais profunda das condições do sistema o que, por vezes, resulta em uma melhor tomada de decisão. Neste sentido, a Lógica Fuzzy vem sendo usada para realizar essa tarefa, pois ela tem a característica
de lidar facilmente com informações imprecisas, codificando o conhecimento do especialista nas chamadas Regras Fuzzy. Entretanto, à medida que a complexidade do sistema aumenta, a tarefa de gerar uma Base de Regras Fuzzy (FRB) adequada ao sistema proposto se torna cada vez mais difícil.
Para auxiliar esse processo de geração da FRB, várias técnicas podem ser usadas e dentre elas destaca-se a técnica de busca denominada Algoritmo Evolutivo (EA). O EA pode ser usado, por exemplo, para a sintonia da Base de Regras Fuzzy do Sistema de Controle de um FMS por intermédio da redução de valores de variáveis de otimização como Makespan ou Tardiness. No caso da variável denominada Makespan, a sintonia ocorre quando o EA gera uma FRB que reduz os valores do makespan do FMS em questão. Entretanto, a construção do EA que efetivamente gera uma FRB sintonizada para um FMS não é trivial, pois é necessário que haja, nesse processo, a construção de
vários tipos de EA com métodos de seleção diferentes, taxas de cruzamento e mutação diferentes dentre outras configurações, até que se encontre o EA adequado à uma dada situação. Sendo assim, no presente trabalho, o objetivo é a construção de um ambiente de configuração e análise de desempenho de EAs para sintonia da FRB do Sistema de Controle de um FMS, ou seja, pretende-se investigar qual o cenário de parâmetros ideal do EA usado na sintonia da FRB do referido sistema
de controle. No presente trabalho, o EA usado foi uma extensão do Algoritmo Genético (GA). Para implementação da proposta, um Sistema Evolutivo para configuração e análise dessa variante do GA foi criado. Nesse sistema, intitulado “EvolSys - Evolutionary System”, parâmetros dos sistema como Número de Varáveis de Entrada da FRB, Número de Variáveis de Saída da FRB, Tamanho da População, Taxa de Mutação e Taxa de Cruzamento do EA, dentre outros são configurados e, por consequência, uma FRB é gerada. Com isso, há a possiblidade da análise do EA para a escolha de uma FRB que venha propiciar a redução do makespan em FMSs. Portanto, é possível concluir, a partir desse trabalho, que o uso de EAs em colaboração com os sistemas Fuzzy pode vir a se tornar
uma importante ferramenta para sintonia da Base de Regras do sistema responsável pelo
sequenciamento das operações de um FMS e, nesse sentido, o ambiente criado cumpre a etapa de configuração e análise do desempenho de EAs.
|
Page generated in 0.0539 seconds