• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifica??o n?o linear usando uma rede fuzzy wavelet neural network modificada

Ara?jo J?nior, Jos? Medeiros de 24 March 2014 (has links)
Made available in DSpace on 2014-12-17T14:55:19Z (GMT). No. of bitstreams: 1 JoseMAJ_TESE.pdf: 3560157 bytes, checksum: 2f20316c7b980a74bdb7b82e97e3bb43 (MD5) Previous issue date: 2014-03-24 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed / Nas ?ltimas d?cadas, as redes neurais t?m se estabelecido como uma das principais ferramentas para a identifica??o de sistemas n?o lineares. Entre os diversos tipos de redes utilizadas em identifica??o, uma que se pode destacar ? a rede neural wavelet (ou Wavelet Neural Network - WNN). Esta rede combina as caracter?sticas de multirresolu??o da teoria wavelet com a capacidade de aprendizado e generaliza??o das redes neurais, podendo fornecer modelos mais exatos do que os obtidos pelas redes tradicionais. Uma evolu??o das redes WNN consiste em combinar a estrutura neuro-fuzzyANFIS (Adaptive Network Based Fuzzy Inference System) com estas redes, gerando-se a estrutura Fuzzy Wavelet Neural Network - FWNN. Essa rede ? muito similar ?s redes ANFIS, com a diferen?a de que os tradicionais polin?mios presentes nos consequentes desta rede s?o substitu?dos por redes WNN. O presente trabalho prop?e uma rede FWNN modificada para a identifica??o de sistemas din?micos n?o lineares. Nessa estrutura, somente fun??es waveletss?o utilizadas nos consequentes. Desta forma, ? poss?vel obter uma simplifica??o da estrutura com rela??o a outras estruturas descritas na literatura, diminuindo o n?mero de par?metros ajust?veis da rede. Para avaliar o desempenho da rede FWNN com essa modifica??o, ? realizada uma an?lise das caracter?sticas da rede, verificando-se as vantagens, desvantagens e o custo-benef?cio quando comparada com outras estruturas FWNNs. As avalia??es s?o realizadas a partir da identifica??o de dois sistemas simulados tradicionalmente encontrados na literatura e um sistema real n?o linear, consistindo de um tanque de multisse??es e n?o linear. Por fim, a rede foi utilizada para inferir valores de temperatura e umidade no interior de uma incubadora neonatal. A execu??o dessa an?lise baseia-se em v?rios crit?rios, tais como: erro m?dio quadr?tico, n?mero de ?pocas de treinamento, n?mero de par?metros ajust?veis, vari?ncia do erro m?dio quadr?tico, entre outros. Os resultados encontrados evidenciam a capacidade de generaliza??o da estrutura modificada, apesar da simplifica??o realizada
2

Crit?rio de correntropia no treinamento de redes fuzzy wavelet neural networks para identifica??o de sistemas din?micos n?o lineares

Linhares, Leandro Luttiane da Silva 03 September 2015 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-06-10T00:04:44Z No. of bitstreams: 1 LeandroLuttianeDaSilvaLinhares_TESE.pdf: 2400561 bytes, checksum: 3693662adcc0c23b5063f51b23d9b6c5 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-06-10T22:50:22Z (GMT) No. of bitstreams: 1 LeandroLuttianeDaSilvaLinhares_TESE.pdf: 2400561 bytes, checksum: 3693662adcc0c23b5063f51b23d9b6c5 (MD5) / Made available in DSpace on 2016-06-10T22:50:22Z (GMT). No. of bitstreams: 1 LeandroLuttianeDaSilvaLinhares_TESE.pdf: 2400561 bytes, checksum: 3693662adcc0c23b5063f51b23d9b6c5 (MD5) Previous issue date: 2015-09-03 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / O grande interesse pela identifica??o n?o linear de sistemas din?micos deve-se, principalmente, ao fato de que uma grande quantidade dos sistemas reais s?o complexos e precisam ter suas n?o linearidades consideradas para que seus modelos possam ser utilizados com sucesso em aplica??es, por exemplo, de controle, predi??o, infer?ncia, entre outros. O presente trabalho analisa a aplica??o das redes Fuzzy Wavelet Neural Network (FWNN) na identifica??o de sistemas n?o lineares sujeitos a ru?dos e outliers. Esses elementos, geralmente, influenciam no procedimento de identifica??o, ocasionando interpreta??es err?neas em rela??o ao comportamento din?mico do sistema. A FWNN combina, em uma ?nica estrutura, a capacidade de tratar incertezas da l?gica fuzzy, as caracter?sticas de multirresolu??o da teoria wavelet e as habilidades de aprendizado e generaliza??o das redes neurais artificiais. Normalmente, o aprendizado dessas redes ? realizado por algum m?todo baseado em gradiente, tendo o erro m?dio quadr?tico como fun??o de custo. Este trabalho avalia a substitui??o dessa tradicional fun??o por uma medida de similaridade da Teoria da Informa??o, denominada correntropia. Esta medida de similaridade permite que momentos estat?sticos de ordem superior possam ser considerados durante o processo de treinamento. Por esta raz?o, ela se torna mais apropriada para distribui??es de erro n?o gaussianas e faz com que o treinamento apresente menor sensibilidade ? presen?a de outliers. Para avaliar esta substitui??o, modelos FWNN s?o obtidos na identifica??o de dois estudos de caso: um sistema real n?o linear, consistindo em um tanque de m?ltiplas se??es, e um sistema simulado baseado em um modelo biomec?nico da articula??o do joelho humano. Os resultados obtidos demonstram que a utiliza??o da correntropia, como fun??o custo no algoritmo de retropropaga??o do erro, torna o procedimento de identifica??o utilizando redes FWNN mais robusto aos outliers. Entretanto, isto somente pode ser alcan?ado a partir do ajuste adequado da largura do kernel gaussiano da correntropia. / The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Page generated in 0.062 seconds