• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuzzy kNNModel Applied to Predictive Toxicology Data Mining

Guo, G., Neagu, Daniel January 2005 (has links)
No / A robust method, fuzzy kNNModel, for toxicity prediction of chemical compounds is proposed. The method is based on a supervised clustering method, called kNNModel, which employs fuzzy partitioning instead of crisp partitioning to group clusters. The merits of fuzzy kNNModel are two-fold: (1) it overcomes the problems of choosing the parameter ¿ ¿ allowed error rate in a cluster and the parameter N ¿ minimal number of instances covered by a cluster, for each data set; (2) it better captures the characteristics of boundary data by assigning them with different degrees of membership between 0 and 1 to different clusters. The experimental results of fuzzy kNNModel conducted on thirteen public data sets from UCI machine learning repository and seven toxicity data sets from real-world applications, are compared with the results of fuzzy c-means clustering, k-means clustering, kNN, fuzzy kNN, and kNNModel in terms of classification performance. This application shows that fuzzy kNNModel is a promising method for the toxicity prediction of chemical compounds.

Page generated in 0.0314 seconds