• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neural and Neuro-Fuzzy Integration in a Knowledge-Based System for Air Quality Prediction.

Neagu, Daniel, Avouris, N.M., Kalapanidas, E., Palade, V. January 2002 (has links)
No / In this paper we propose a unified approach for integrating implicit and explicit knowledge in neurosymbolic systems as a combination of neural and neuro-fuzzy modules. In the developed hybrid system, training data set is used for building neuro-fuzzy modules, and represents implicit domain knowledge. The explicit domain knowledge on the other hand is represented by fuzzy rules, which are directly mapped into equivalent neural structures. The aim of this approach is to improve the abilities of modular neural structures, which are based on incomplete learning data sets, since the knowledge acquired from human experts is taken into account for adapting the general neural architecture. Three methods to combine the explicit and implicit knowledge modules are proposed. The techniques used to extract fuzzy rules from neural implicit knowledge modules are described. These techniques improve the structure and the behavior of the entire system. The proposed methodology has been applied in the field of air quality prediction with very encouraging results. These experiments show that the method is worth further investigation.
2

A framework to manage uncertainties in cloud manufacturing environment

Yadekar, Yaser January 2016 (has links)
This research project aims to develop a framework to manage uncertainty in cloud manufacturing for small and medium enterprises (SMEs). The framework includes a cloud manufacturing taxonomy; guidance to deal with uncertainty in cloud manufacturing, by providing a process to identify uncertainties; a detailed step-by-step approach to managing the uncertainties; a list of uncertainties; and response strategies to security and privacy uncertainties in cloud manufacturing. Additionally, an online assessment tool has been developed to implement the uncertainty management framework into a real life context. To fulfil the aim and objectives of the research, a comprehensive literature review was performed in order to understand the research aspects. Next, an uncertainty management technique was applied to identify, assess, and control uncertainties in cloud manufacturing. Two well-known approaches were used in the evaluation of the uncertainties in this research: Simple Multi-Attribute Rating Technique (SMART) to prioritise uncertainties; and a fuzzy rule-based system to quantify security and privacy uncertainties. Finally, the framework was embedded into an online assessment tool and validated through expert opinion and case studies. Results from this research are useful for both academia and industry in understanding aspects of cloud manufacturing. The main contribution is a framework that offers new insights for decisions makers on how to deal with uncertainty at adoption and implementation stages of cloud manufacturing. The research also introduced a novel cloud manufacturing taxonomy, a list of uncertainty factors, an assessment process to prioritise uncertainties and quantify security and privacy related uncertainties, and a knowledge base for providing recommendations and solutions.

Page generated in 0.0413 seconds