• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 9
  • Tagged with
  • 201
  • 201
  • 198
  • 198
  • 22
  • 20
  • 17
  • 17
  • 17
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Interactions in Dye-sensitized Solar Cells

Greijer Agrell, Helena January 2003 (has links)
<p>The interactions between the molecular constituents in dye-sensitized solar cells were studied with UV-VIS and IR spectroscopy, Raman scattering, conductivity and electron accumulation measurements.</p><p>From stability studies of the dye, bis(tetrabutylammonium)cis-bis(thiocyanato) bis(2,2’-bipyridine-4-carboxylic acid, 4’-carboxylate) ruthenium(II), in the complete solar cell, the thiocyanate ion ligand was found to be lost from the dye. A method was developed to study mechanisms in a sealed dye-sensitized solar cell using resonance Raman scattering (RRS). RRS studies of a complete dye-sensitized solar cell including iodine and lithium iodide in the electrolyte indicate that triiodide exchange the SCN<sup>-</sup> ligand of the dye. It was proposed that an ion pair Li<sup>+</sup>…I<sub>3</sub><sup>-</sup> formation occurred, which, by a reduced electrostatic repulsion between I<sub>3</sub><sup>-</sup> and SCN<sup>-</sup> facilitated the exchange of these anions at Ru(II) of the dye. The additive 1-methylbenzimidazole suppressed the SCN<sup>-</sup>/I<sub>3</sub><sup>-</sup> ligand exchange by forming a complex with Li<sup>+</sup>.</p><p>In order to study charge transport in nanostructured TiO<sub>2</sub> films permeated with electrolyte, a technique was developed for determining activation energies of conduction, electron accumulation and effective mobility. Two regions were distinguished from the relation between conductivity and electron concentration. In the first region (~1-20 electrons per TiO<sub>2</sub> particle), which resembles best the region where the nanostructured dye-sensitized solar cell operates, the results can be fitted to some extent with a trapping/detrapping or a hopping model for charge transport, but not with a conduction band model. For the second region (> 20 electrons per TiO<sub>2</sub> particle), charge transport by electrons in the conduction band seems to be the most applicable model.</p><p>Through this work many effects from the interplay between the solar cell components were observed. These observations emphasize the importance of well-balanced interactions in dye-sensitized solar cells.</p>
52

Conducting Polymers Containing In-Chain Metal Centres : Electropolymerisation and Charge Transport

Hjelm, Johan January 2003 (has links)
<p>Conjugated polymers that exhibit high electronic conductivities play key roles in the emerging field of molecular electronics. In particular, linking metal centres with useful electrochemical, photophysical, or catalytic properties to the backbone, or within the polymer chain itself, is a topic which has attracted a significant amount of interest lately. Structurally rigid monomers that can be electropolymerised to form highly conducting molecular wires may provide new insights into conduction mechanisms, e.g., exploiting resonant superexchange (electron-hopping) by tuning the energies of redox centre and bridge states. The focus of this thesis lies on the electrochemical investigation of preparation, growth dynamics, and charge transport dynamics of oligothiophene/transition metal hybrid materials. The incorporation of ruthenium(II) and osmium(II) terpyridine complexes into such polymeric assemblies was accomplished by an electropolymerisation procedure, to produce rod-like oligothienyl-bridged metallopolymers. The properties of the monomers used were characterised by optical spectroscopy and electrochemical techniques. Charge transport was studied in detail for some of the materials created, and it was found that the electron transport rate and dc conductivity was enhanced by up to two orders of magnitude compared to relevant non-conjugated polymers, demonstrating the usefulness of this approach for optimization of charge transport in metallopolymers. The charge transport diffusion coefficent was determined to (2.6 ± 0.5) x 10<sup>-6</sup> cm<sup>2</sup> s<sup>-1</sup> for a quaterthienyl-bridged {Os(tpy)<sub>2</sub>} polymer by use of an electrochemical steady-state method carried out using a transistor-like experimental geometry. It was found that charge transport in these materials is concentration-gradient driven. The rate limiting step of the charge transport process was investigated using electrochemical impedance spectroscopy. The electropolymerisation dynamics of one of the monomers was studied using microelectrodes, and the results obtained shows that electropolymerisation is highly efficient, and indicate that mass transport controls this process. Through a combination of controlled potential deposition and SEM imaging it was demonstrated that it is possible to exploit the edge effect of microelectrodes to promote film growth in a direction co-planar with the electrode surface.</p>
53

Electrochemical Studies of Redox Properties and Diffusion in Self-Assembled Systems

Kostela, Johan January 2004 (has links)
<p>In this thesis electron transfer reactions and diffusion of redox molecules in three different types of self-aggregated structures are investigated. Electrochemistry was used to investigate the redox potential and diffusion coefficients for redox active molecules with different polarity. The first aggregate system studied was the micellar phase. The role of electrostatic interactions in the stability of an amphiphilic viologen was investigated for differently charged micelles. It was concluded that the electrostatic environment changed the redox potential of the viologen. In differently charged micelles the redox potential was more negative compared to when the viologen was situated in micelles with the same charge.</p><p>The second structure investigated is a very fascinating phase, the bicontinuous cubic phase, with its continuous channels of water and an apolar bilayer. Its domains with different polarity made it possible to solvate both hydrophilic and hydrophobic molecules. An amphiphilic molecule will have its head-group at the interface between the apolar and polar part, and can move lateral within the bilayer. All molecules investigated made contact with and reacted at the surface of the electrode. The diffusion of water bound species diffusing in the water channels was 3-4 times slower than in water. Hydrophobic and amphiphilic molecules were much more hindered, probably because the cubic phase was not defect free.</p><p>The third kind of structure studied was a lamellar system. This phase is built up from planar bilayers that are stacked with a repeating distance and with water in between. A hydrophilic molecule was severely hindered to move in the direction perpendicular to the bilayer plane. Upon addition of the peptide melittin the current increased, due to pore formation in the bilayer.</p>
54

Interactions in Dye-sensitized Solar Cells

Greijer Agrell, Helena January 2003 (has links)
The interactions between the molecular constituents in dye-sensitized solar cells were studied with UV-VIS and IR spectroscopy, Raman scattering, conductivity and electron accumulation measurements. From stability studies of the dye, bis(tetrabutylammonium)cis-bis(thiocyanato) bis(2,2’-bipyridine-4-carboxylic acid, 4’-carboxylate) ruthenium(II), in the complete solar cell, the thiocyanate ion ligand was found to be lost from the dye. A method was developed to study mechanisms in a sealed dye-sensitized solar cell using resonance Raman scattering (RRS). RRS studies of a complete dye-sensitized solar cell including iodine and lithium iodide in the electrolyte indicate that triiodide exchange the SCN- ligand of the dye. It was proposed that an ion pair Li+…I3- formation occurred, which, by a reduced electrostatic repulsion between I3- and SCN- facilitated the exchange of these anions at Ru(II) of the dye. The additive 1-methylbenzimidazole suppressed the SCN-/I3- ligand exchange by forming a complex with Li+. In order to study charge transport in nanostructured TiO2 films permeated with electrolyte, a technique was developed for determining activation energies of conduction, electron accumulation and effective mobility. Two regions were distinguished from the relation between conductivity and electron concentration. In the first region (~1-20 electrons per TiO2 particle), which resembles best the region where the nanostructured dye-sensitized solar cell operates, the results can be fitted to some extent with a trapping/detrapping or a hopping model for charge transport, but not with a conduction band model. For the second region (&gt; 20 electrons per TiO2 particle), charge transport by electrons in the conduction band seems to be the most applicable model. Through this work many effects from the interplay between the solar cell components were observed. These observations emphasize the importance of well-balanced interactions in dye-sensitized solar cells.
55

Conducting Polymers Containing In-Chain Metal Centres : Electropolymerisation and Charge Transport

Hjelm, Johan January 2003 (has links)
Conjugated polymers that exhibit high electronic conductivities play key roles in the emerging field of molecular electronics. In particular, linking metal centres with useful electrochemical, photophysical, or catalytic properties to the backbone, or within the polymer chain itself, is a topic which has attracted a significant amount of interest lately. Structurally rigid monomers that can be electropolymerised to form highly conducting molecular wires may provide new insights into conduction mechanisms, e.g., exploiting resonant superexchange (electron-hopping) by tuning the energies of redox centre and bridge states. The focus of this thesis lies on the electrochemical investigation of preparation, growth dynamics, and charge transport dynamics of oligothiophene/transition metal hybrid materials. The incorporation of ruthenium(II) and osmium(II) terpyridine complexes into such polymeric assemblies was accomplished by an electropolymerisation procedure, to produce rod-like oligothienyl-bridged metallopolymers. The properties of the monomers used were characterised by optical spectroscopy and electrochemical techniques. Charge transport was studied in detail for some of the materials created, and it was found that the electron transport rate and dc conductivity was enhanced by up to two orders of magnitude compared to relevant non-conjugated polymers, demonstrating the usefulness of this approach for optimization of charge transport in metallopolymers. The charge transport diffusion coefficent was determined to (2.6 ± 0.5) x 10-6 cm2 s-1 for a quaterthienyl-bridged {Os(tpy)2} polymer by use of an electrochemical steady-state method carried out using a transistor-like experimental geometry. It was found that charge transport in these materials is concentration-gradient driven. The rate limiting step of the charge transport process was investigated using electrochemical impedance spectroscopy. The electropolymerisation dynamics of one of the monomers was studied using microelectrodes, and the results obtained shows that electropolymerisation is highly efficient, and indicate that mass transport controls this process. Through a combination of controlled potential deposition and SEM imaging it was demonstrated that it is possible to exploit the edge effect of microelectrodes to promote film growth in a direction co-planar with the electrode surface.
56

Electrochemical Studies of Redox Properties and Diffusion in Self-Assembled Systems

Kostela, Johan January 2004 (has links)
In this thesis electron transfer reactions and diffusion of redox molecules in three different types of self-aggregated structures are investigated. Electrochemistry was used to investigate the redox potential and diffusion coefficients for redox active molecules with different polarity. The first aggregate system studied was the micellar phase. The role of electrostatic interactions in the stability of an amphiphilic viologen was investigated for differently charged micelles. It was concluded that the electrostatic environment changed the redox potential of the viologen. In differently charged micelles the redox potential was more negative compared to when the viologen was situated in micelles with the same charge. The second structure investigated is a very fascinating phase, the bicontinuous cubic phase, with its continuous channels of water and an apolar bilayer. Its domains with different polarity made it possible to solvate both hydrophilic and hydrophobic molecules. An amphiphilic molecule will have its head-group at the interface between the apolar and polar part, and can move lateral within the bilayer. All molecules investigated made contact with and reacted at the surface of the electrode. The diffusion of water bound species diffusing in the water channels was 3-4 times slower than in water. Hydrophobic and amphiphilic molecules were much more hindered, probably because the cubic phase was not defect free. The third kind of structure studied was a lamellar system. This phase is built up from planar bilayers that are stacked with a repeating distance and with water in between. A hydrophilic molecule was severely hindered to move in the direction perpendicular to the bilayer plane. Upon addition of the peptide melittin the current increased, due to pore formation in the bilayer.
57

Water Relaxation Processes as Seen by NMR Spectroscopy Using MD and BD Simulations

Åman, Ken January 2005 (has links)
This thesis describes water proton and deuterium relaxation processes, as seen by Nuclear Magnetic Resonance (NMR) spectroscopy, using Brownian Dynamics (BD) or Molecular Dynamics (MD) simulations. The MD simulations reveal new detailed information about the dynamics and order of water molecules outside of a lipid bilayer. This is very important information in order to fully understand deuterium NMR measurements in lipid bilayer systems, which require an advanced analysis, because of the complicated water motion (such as tumbling and self-diffusion). The BD simulation methods are combined with the powerful Stochastic Liouville Equation (SLE) in its Langevin form (SLEL) to give new insight into both 1H2O and 2H2O relaxation. The new simulation techniques which combine BD and SLEL can give important new information in cases where other methods do not apply. The deuterium relaxation is described in the context of a water/lipid interface and is in a very elegant way combined with the simulation of diffusion on curved surfaces developed by our research group. 1H2O spin-lattice relaxation is described for paramagneticsystems. With this we mean systems with paramagnetic transition metal ions or complexes, that are dissolved into a water solvent. The theoretical description of such systems are quite well investigated but such systems are not yet fully understood. An important consequence of the Paramagnetic Relaxation Enhancement (PRE) calculations when using the SLEL approach combined with BD simulations is that we obtain the electron correlation functions, which describe the relaxation of the paramagnetic electron spins. This means for example that it is also straight forward to generate Electron Spin Resonance (ESR) lineshapes.
58

Simulation of Relaxation Processes in Fluorescence, EPR and NMR Spectroscopy / Simulering av Relaxationsprocesser inom Fluoresens, EPR och NMR Spektroskopi

Håkansson, Pär January 2004 (has links)
Relaxation models are developed using numerical solutions of the Stochastic Liouville Equation of motion. Simplified descriptions such as the stochastic master equation is described in the context of fluorescence depolarisation experiments. Redfield theory is used in order to describe NMR relaxation in bicontinuous phases. The stochastic fluctuations in the relaxation models are accounted for using Brownian Dynamics simulation technique. A novel approach to quantitatively analyse fluorescence depolarisation experiments and to determine intramolecular distances is presented. A new Brownian Dynamics simulation technique is developed in order to characterize translational diffusion along the water lipid interface of bicontinuous cubic phases.
59

Quantum Chemical Investigations of Phenol and Larger Aromatic Molecules on TiO2 Surface

Karlsson, Maria January 2004 (has links)
Adsorption of organic molecules at a surface of titanium dioxide (101) anatase is studied using quantum-chemical density functional theory. Anatase can be used in solar cells. For the clean anatase surface the band gap is so large that only UV-light can excite electrons. Different groups with conjugated systems are attached to obtain a more suitable band gap. Phenol was attached in different positions to a cluster of anatase and geometry optimized using the B3LYP-functional. The geometry that was energetically most favorable was used to put in phenylmethanol, phenylethanol, naphthol, 2-phenanthrol, 1-pyrol and 2-perylol. To give a more realistic model of phenol at anatase, a study of a two- dimensional periodic anatase surface was also made. Molecular orbitals were calculated to study the overlap between HOMO and LUMO orbitals. The calculation shows that phenol will remain as a molecule and will not dissociate. The band gap gets smaller when molecules are attached at the cluster and with 2-perylol it reaches the energy of visible light. The molecular orbitals for HOMO, LUMO and LUMO of the adsorbed molecule were investigated. HOMO was localized at the molecule, LUMO at the cluster and LUMO of the adsorbed molecule move closer to the energy of LUMO when the number of rings increases.
60

Amphiphilic Molecules in Aqueous Solution

Persson, Gerd January 2003 (has links)
<p>The aim of this thesis was to investigate amphiphilic molecules in aqueous solution. The work was divided into two parts. In the first part the effects of different counterions on phase behavior was investigated, while the second part concerns the 1-monooleoyl-rac-glycerol (MO)/n-octyl-β-D-glucoside (OG)/2H2O-system. </p><p>The effects of mixing monovalent and divalent counterions were studied for two surfactant systems, sodium/calcium octyl sulfate, and piperidine/piperazine octanesulfonate. It was found that mixing monovalent and divalent counterions resulted in a large decrease in cmc already at very low fractions of the divalent counterion. Moreover, the degree of counterion binding for piperidine in the piperidine/piperazine octanesulfonate system was much higher than predicted, probably due to the larger hydrophobic moiety of piperidine.</p><p>The effects of hydrophobic counterions were studied for eight alkylpyridinium octanesulfonates (APOS). The results were discussed in terms of packing constraints. The anomalous behavior of the 2H2O quadrupolar splittings in the lamellar phases was explained by the presence of two or more binding sites at the lamellae surface. </p><p>The MO/OG/water system was studied in general and the MO-rich cubic phases in particular. When mixing MO and OG it was found that OG-rich structures (micelles, hexagonal and cubic phase of space group Ia3d) could solubilize quite large amounts of MO, while the MO-rich cubic structures where considerable less tolerant towards the addition of OG. The micelles in the OG-rich L1 phase were found to remain rather small and discrete in the larger part of the L1 phase area, but at low water concentration and high MO content a bicontinuous structure was indicated. Only small fractions of OG was necessary to convert the MO-rich cubic Pn3m structure to an Ia3d structure, and upon further addition of OG a lamellar (La) phase formed. Since the larger part of the phase diagram contains a lamellar structure (present either as a single La phase or as a dispersion of lamellar particles together with other phases), the conclusion was that introducing OG in the MO structures, forces the MO bilayer to become more flat. Upon heating the cubic phases, structures with more negative curvature were formed. The transformation between the cubic structures required very little energy, and this resulted in the appearance of additional peaks in the diffractograms.</p>

Page generated in 0.1687 seconds