• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Espalhamento Raman de sistemas a base de GaN dopados

Guarnieri, Leandro de Castro 15 August 2007 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-28T12:40:48Z No. of bitstreams: 1 leandrodecastroguarieri.pdf: 1096642 bytes, checksum: e2c0ee03009dadfdf2e72f0f3138fdd6 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-07T21:08:56Z (GMT) No. of bitstreams: 1 leandrodecastroguarieri.pdf: 1096642 bytes, checksum: e2c0ee03009dadfdf2e72f0f3138fdd6 (MD5) / Made available in DSpace on 2017-08-07T21:08:56Z (GMT). No. of bitstreams: 1 leandrodecastroguarieri.pdf: 1096642 bytes, checksum: e2c0ee03009dadfdf2e72f0f3138fdd6 (MD5) Previous issue date: 2007-08-15 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho apresentamos cálculos para o espalhamento Raman eletrônico via flutuação de densidade de carga para sistemas a base de GaN dopados. As estruturas estudadas foram a super-rede δ-dopada e os sistemas de GaN uniformemente dopados. No caso da super-rede periodicamente dopada, a estrutura eletrônica foi determinada utilizando-se a Teoria do Funcional Densidade na aproximação de densidade local. Para os sistemas uniformemente dopados, a natureza das excitações elementares Raman foi investigada teoricamente e experimentalmente, tais sistemas consistem de estruturas cúbicas de GaN uniformemente dopadas (tipo-n) crescidas sobre substratos de GaAs. / In this work we present calculations of eletronic Raman cross-sections of doped GaN based system via charge - density mechanism. The studied structures were δ-doped superlattices and uniform doped GaN systems. In the case of periodically doped superlattice the eletronic structure was obtained using Density Funcional Theory in the local density approximation. Concerning the uniform doped system, the nature of their Raman elementary excitations were investigated theoretically and experimentally. Such structures consisted of cubic GaN uniformly doped (type-n) grown on GaAs substrates.
2

Estudos de primeiros princípios do LaAIO3 e do SrTiO3 : superfícies e interface

Silva, Alexandre Ramalho January 2015 (has links)
Orientador: Prof. Dr. Gustavo Martini Dalpian / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2015. / Em 2004, foi descoberto que a interface formada entre as superf'ýcies (001) do SrTiO3 e LaAlO3 apresenta um g'as de el'etrons bidimensional (2DEG), apesar de o bulk desses materiais ser isolante. Em 2011, foi reportado um 2DEG similar na superf'ýcie (001) do SrTiO3. Apesar de haver muitos trabalhos acerca desse assunto, n¿ao h'a um consenso sobre a origem do 2DEG nesses sistemas. Inclu'ýda nesse contexto, esta tese reporta os resultados de c'alculos de primeiros princ'ýpios baseados na Teoria do Funcional da Densidade (DFT) da superf'ýcie (001) dos filmes finos de SrTiO3 e LaAlO3 e da interface (001) formada entre esses dois 'oxidos. Filmes finos de LaAlO3 e SrTiO3 tendem a ter vac¿ancias com menores energias de forma¸c¿ao da superf'ýcie, e quando com vac¿ancias apresentaram comportamento condutor. Filmes finos de SrTiO3 sem defeitos demonstraram comportamento isolante. A vac¿ancia de oxig¿enio na superf'ýcie com termina¸c¿ao TiO2 'e a menos custosa energeticamente, e nesse caso 'e detectado um 2DEG da superf'ýcie do SrTiO3. O mesmo ocorre em filmes finos de LaAlO3, com vac¿ancias de oxig¿enio e termina¸c¿ao AlO2 e vac¿ancias de La e termina¸c¿ao LaO, podendo haver forma¸c¿ao espont¿anea nesses casos. Em ambos os casos, as simula¸c¿oes sugerem que 'e formado um 2DEG na superf'ýcie. As simula¸c¿oes da interface mostraram que para a hete2 roestrutura sem defeitos 'e necess'aria a deposi¸c¿ao de quatro ou mais camadas de LaAlO3 sobre o substrato de SrTiO3 para que ocorra o comportamento met'alico. Vac¿ancias de oxig¿enio se formam preferencialmente na interface quando a espessura do LaAlO3 'e de tr¿es camadas ou menos. Para quatro ou mais camadas de LaAlO3, as vac¿ancias de oxig¿enio tendem a se localizar na superf'ýcie. Para todas as simula¸c¿oes da interface com defeitos, as heteroestruturas apresentaram comportamento met'alico, por'em n¿ao foi detectado um 2DEG na interface, j'a que as cargas n¿ao se apresentaram confinadas na regi¿ao da interface. Vac¿ancias justificam o 2DEG na superf'ýcie (001) de filmes finos de LaAlO3 e SrTiO3, por'em n¿ao explicam o 2DEG na interface entre os mesmos. / In 2004 it was discovered that the interface between the (001) SrTiO3 and LaAlO3 surfaces presents a two dimensional electron gas (2DEG), although the bulk of these materials are insulators. In 2011 it was reported a similar 2DEG at (001) SrTiO3 surface. Despite many studies on this subject, there is no consensus about the origin of the 2DEG in these systems. Included in this context, this thesis reports results of first principles calculations based on Density Functional Theory (DFT) about (001) SrTiO3 and LaAlO3 thin films surfaces and the (001) interface formed between these two oxides. For LaAlO3 and SrTiO3 thin films, vacancies tend to have lower formation energies at the surface. Non-defective SrTiO3 thin films have demonstrated an insulator behavior. The oxygen vacancy at the TiO2 terminated surface is the most stable and in this case is observed a 2DEG at the SrTiO3 surface. The same occurs for LaAlO3 thin films with oxygen vacancies and for the AlO2 termination and with La vacancies with LaO termination. These vacancies may be formed spontaneously. In both cases, the simulations suggest a 2DEG at the surface. The interface simulations showed that in the non-defective heterostructure it is necessary the deposition of four or more layers of LaAlO3 over SrTiO3 substrate to occur a metallic behavior. Oxygen 4 vacancies are preferably formed at the interface when the LaAlO3 thickness is three layers or less. For four LaAlO3 layers or more, the oxygen vacancies tend to be located at the surface. For all simulations of the defective interface, the heterostructures showed metallic behavior. However it was not detected a 2DEG at the interface, owing the fact that the charges are not confined at the interface region. Vacancies can justify the 2DEG at the SrTiO3 and LaAlO3 thin films surfaces, however does not explain the 2DEG at the interface between them.
3

Energy loss of light ions (H+ and He+) in matter: high accuracy measurements and comparison with the FEG model / Perda de energia de íons leves (H+ e He+) na matéria: medidas de alta acurácia e comparação com o modelo de FEG

Moro, Marcos Vinicius 29 June 2017 (has links)
The phenomenon of energy loss that occurs when an ion interacts with matter, also called stopping power, has been investigated for more than a century, and has provided findings of interest. However, reliable procedures for obtaining accurate experimental measurements and a fully theoretical comprehension of the process are tasks still in high demand by the scientific community. Moreover, stopping power data are prerequisites in several applications in modern science, such as engineering, ion implantation and modification of materials, damage to electronics devices (e.g. space radiation), medical physics (e.g. proton therapy), among others. In this thesis we i) develop a rigorous experimental protocol to measure stopping power with high precision, and ii) investigate the collapse of the free electron gas (FEG) model in energy loss of light ions (protons) at a low energy range in transition and rare-earth metals. In the first part, we present an approach to obtain, with high accuracy, the stopping cross sections in the pure materials Al and Mo for protons in the energy range of [0.9 - 3.6] MeV by means of the transmission method. The traceability of the sources of uncertainties are fully evaluated and the final accuracy of the results is 0.63% (0.32% rand. and 0.54% syst.) for Al, and 1.5 % (0.44 % rand. and 1.4% syst.) for Mo, with both results primarily limited by the quality and homogeneity of the stopping foils. For Al, this high accuracy represents an improvement compared to the results obtained in previous studies and serves as a benchmark for our procedure. The most important sources of uncertainties were random - the uncertainty in the peak positions and in the Gaussian fits; and systematic - the non-uniformity thickness of the foils (a special procedure was developed to correct this). Even though the final uncertainty for Mo is higher than for Al, our results improve on the amount of data currently available for the energy range considered. Both data sets are compared with the most commonly employed theoretical models and Monte Carlo codes in the literature. In the second part, electronic stopping cross sections of nontrivial solids, that is, transition and rare earth metals (Ta and Gd) for slow protons are experimentally investigated, and the data were compared with the results for Pt and Au, to understand how energy losses in these metals are correlated with electronic band structures, and to understand the failure of the FEG model predictions. The higher stopping powers found for Ta and Gd cannot be explained by means of the FEG model; however, these effects are successfully correlated with the high density of states (DOS) of both the occupied and unoccupied electronic levels in these metals. For the case of Gd, the experimental data are extended in the energy range until the Bragg\'s peak is reached. The two parts of this thesis were published in Physical Review A 93 022704 (2016), and in Physical Review Letters 18 103401 (2017), respectively. / O fenômeno de perda de energia quando um íon interage com a matéria, também conhecido como poder de freamento, vem sendo investigado por mais de um século, gerando grandes descobertas. Entretanto, conseguir obter medidas experimentais com alta precisão, ou elaborar um completo entendimento teórico dos processos de perda de energia são tarefas extremamente difíceis e ainda muito requeridas pela comunidade científica. Além disso, dados de perda de energia são pré-requisitos em várias aplicações e ramos da ciência moderna, tais como: engenharia, implantação e modificação de materiais, danos em dispositivos eletrônicos (radiação espacial), física médica (próton terapia), etc. Esta tese tem dois focos: i) desenvolver um rigoroso protocolo experimental para medir stopping power com alta precisão e ii) investigar a quebra de validade do modelo de Gás de Elétrons Livres (FEG) para a perda de energia de prótons lentos em metais de transição e terra raras. Na primeira parte apresentamos uma abordagem experimental para obter com alta precisão o poder de freamento em materiais puros (Al e Mo) para prótons no intervalo de energia de [0,9 - 3,6] MeV pelo método de transmissão. A rastreabilidade das fontes de incerteza foi determinada e as incertezas finais encontradas foram: 0,63 % (0,32 % aleat. e 0,54 % sist.) para Al e 1,5 % (0,44 % aleat. e 1,4 % sist.) para Mo, ambas devido a qualidade e homogeneidade das folhas freadoras. Para Al, esta acurácia representa um avanço comparado com publicações anteriores e, assim, serviu como uma referência de nosso procedimento. As mais importantes fontes de incerteza foram: aleatória incerteza das posições dos picos e dos ajustes Gaussianos e sistemática não-uniformidade das folhas-alvo (um procedimento foi desenvolvido para corrigir isso). Embora a incerteza final do Mo é um pouco maior do que do Al, nossos resultados ajudaram a complementar a baixa quantidade de dados disponíveis para o intervalo de energia considerado. Ambos conjuntos de dados foram comparados com os mais comuns modelos teóricos e códigos de Monte Carlo na literatura. Para a segunda parte, poder de freamento em metais não tão comuns tais como transição (Ta) e terras-raras (Gd) para prótons com baixas velocidades foram experimentalmente investigados, e os dados comparados com resultados de Pt e Au, a fim de entender como o stopping power destes metais está correlacionado com as estruturas de bandas eletrônicas, e assim tentar explicar a falha do modelo de FEG. Os altos valores das perdas de energias encontradas para Ta e Gd não puderam ser explicadas pelo modelo de FEG, e portanto foram correlacionados com a densidade de estados (DOS) em ambos os níveis ocupados e não ocupados destes metais. Para o caso do Gd, os dados experimentais foram estendidos em um intervalo de energia até alcançarem o pico de Bragg. A primeira parte desta tese foi publicada na Physical Review A 93 022704 (2016), e a segunda parte na Physical Review Letters 18 103401 (2017).
4

Energy loss of light ions (H+ and He+) in matter: high accuracy measurements and comparison with the FEG model / Perda de energia de íons leves (H+ e He+) na matéria: medidas de alta acurácia e comparação com o modelo de FEG

Marcos Vinicius Moro 29 June 2017 (has links)
The phenomenon of energy loss that occurs when an ion interacts with matter, also called stopping power, has been investigated for more than a century, and has provided findings of interest. However, reliable procedures for obtaining accurate experimental measurements and a fully theoretical comprehension of the process are tasks still in high demand by the scientific community. Moreover, stopping power data are prerequisites in several applications in modern science, such as engineering, ion implantation and modification of materials, damage to electronics devices (e.g. space radiation), medical physics (e.g. proton therapy), among others. In this thesis we i) develop a rigorous experimental protocol to measure stopping power with high precision, and ii) investigate the collapse of the free electron gas (FEG) model in energy loss of light ions (protons) at a low energy range in transition and rare-earth metals. In the first part, we present an approach to obtain, with high accuracy, the stopping cross sections in the pure materials Al and Mo for protons in the energy range of [0.9 - 3.6] MeV by means of the transmission method. The traceability of the sources of uncertainties are fully evaluated and the final accuracy of the results is 0.63% (0.32% rand. and 0.54% syst.) for Al, and 1.5 % (0.44 % rand. and 1.4% syst.) for Mo, with both results primarily limited by the quality and homogeneity of the stopping foils. For Al, this high accuracy represents an improvement compared to the results obtained in previous studies and serves as a benchmark for our procedure. The most important sources of uncertainties were random - the uncertainty in the peak positions and in the Gaussian fits; and systematic - the non-uniformity thickness of the foils (a special procedure was developed to correct this). Even though the final uncertainty for Mo is higher than for Al, our results improve on the amount of data currently available for the energy range considered. Both data sets are compared with the most commonly employed theoretical models and Monte Carlo codes in the literature. In the second part, electronic stopping cross sections of nontrivial solids, that is, transition and rare earth metals (Ta and Gd) for slow protons are experimentally investigated, and the data were compared with the results for Pt and Au, to understand how energy losses in these metals are correlated with electronic band structures, and to understand the failure of the FEG model predictions. The higher stopping powers found for Ta and Gd cannot be explained by means of the FEG model; however, these effects are successfully correlated with the high density of states (DOS) of both the occupied and unoccupied electronic levels in these metals. For the case of Gd, the experimental data are extended in the energy range until the Bragg\'s peak is reached. The two parts of this thesis were published in Physical Review A 93 022704 (2016), and in Physical Review Letters 18 103401 (2017), respectively. / O fenômeno de perda de energia quando um íon interage com a matéria, também conhecido como poder de freamento, vem sendo investigado por mais de um século, gerando grandes descobertas. Entretanto, conseguir obter medidas experimentais com alta precisão, ou elaborar um completo entendimento teórico dos processos de perda de energia são tarefas extremamente difíceis e ainda muito requeridas pela comunidade científica. Além disso, dados de perda de energia são pré-requisitos em várias aplicações e ramos da ciência moderna, tais como: engenharia, implantação e modificação de materiais, danos em dispositivos eletrônicos (radiação espacial), física médica (próton terapia), etc. Esta tese tem dois focos: i) desenvolver um rigoroso protocolo experimental para medir stopping power com alta precisão e ii) investigar a quebra de validade do modelo de Gás de Elétrons Livres (FEG) para a perda de energia de prótons lentos em metais de transição e terra raras. Na primeira parte apresentamos uma abordagem experimental para obter com alta precisão o poder de freamento em materiais puros (Al e Mo) para prótons no intervalo de energia de [0,9 - 3,6] MeV pelo método de transmissão. A rastreabilidade das fontes de incerteza foi determinada e as incertezas finais encontradas foram: 0,63 % (0,32 % aleat. e 0,54 % sist.) para Al e 1,5 % (0,44 % aleat. e 1,4 % sist.) para Mo, ambas devido a qualidade e homogeneidade das folhas freadoras. Para Al, esta acurácia representa um avanço comparado com publicações anteriores e, assim, serviu como uma referência de nosso procedimento. As mais importantes fontes de incerteza foram: aleatória incerteza das posições dos picos e dos ajustes Gaussianos e sistemática não-uniformidade das folhas-alvo (um procedimento foi desenvolvido para corrigir isso). Embora a incerteza final do Mo é um pouco maior do que do Al, nossos resultados ajudaram a complementar a baixa quantidade de dados disponíveis para o intervalo de energia considerado. Ambos conjuntos de dados foram comparados com os mais comuns modelos teóricos e códigos de Monte Carlo na literatura. Para a segunda parte, poder de freamento em metais não tão comuns tais como transição (Ta) e terras-raras (Gd) para prótons com baixas velocidades foram experimentalmente investigados, e os dados comparados com resultados de Pt e Au, a fim de entender como o stopping power destes metais está correlacionado com as estruturas de bandas eletrônicas, e assim tentar explicar a falha do modelo de FEG. Os altos valores das perdas de energias encontradas para Ta e Gd não puderam ser explicadas pelo modelo de FEG, e portanto foram correlacionados com a densidade de estados (DOS) em ambos os níveis ocupados e não ocupados destes metais. Para o caso do Gd, os dados experimentais foram estendidos em um intervalo de energia até alcançarem o pico de Bragg. A primeira parte desta tese foi publicada na Physical Review A 93 022704 (2016), e a segunda parte na Physical Review Letters 18 103401 (2017).

Page generated in 0.1094 seconds