• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Programmation de mouvements de locomotion et manipulation pour robots humanoïdes et expérimentations / Programming humanoid robots for locomotion and manipulation with experiments

Vaillant, Joris 28 May 2015 (has links)
Cette thèse propose une approche pour générer un mouvement corps complet avec contacts non coplanaires, permettant à un robot de se déplacer dans un environnement, de manipuler des objets complexes ou de collaborer avec différents agents. Les méthodes développées dans cette thèse tentent de prendre en compte une grande variété de robots, de l'humanoïde au manipulateur à base fixe en passant par les objets sous actionnés. En premier lieu, nous abordons le problème du choix des positions des points de contacts qu'un robot sous-actionné doit prendre pour se déplacer dans l'environnement. Nous calculons, en un seul problème d'optimisation non-linéaire, une séquence de postures qui satisfait une séquence de contacts donnés. Cette formulation permet de trouver la position des contacts optimale, car le choix de la position d'un contact d'une posture va prendre en compte les postures précédentes et suivantes. Elle permet aussi d'effectuer des tâches pour certaines postures qui prendront en compte l'aspect prioritaire du déplacement. Nous introduisons ensuite une méthode de génération de mouvement qui, en se basant sur la programmation quadratique, permet de résoudre le problème de géométrie inverse et de la dynamique inverse pour un robot à base fixe ou mobile, tout en satisfaisant des contraintes d'égalités et d'inégalités.Cette génération de mouvement est assez rapide pour fonctionner à la vitesse de la boucle de contrôle des robotsHRP2-10 et HRP4, et peut donc être utilisé en temps réel. À l'aide d'une machine à état, nous transformons la séquence de postures calculée à priori en une série de tâches à effectuer par le générateur de mouvement, ce qui permet à notre robot de se déplacer dans un environnement complexe. Nous étendons alors notre méthode de génération de mouvement pour calculer la commande d'un nombre arbitraire de robots. Cette extension nous permet de gérer des tâches de manipulation d'objets complexes, de collaboration entre plusieurs agents et de mouvement dans un environnement dynamique. Nous pouvons aussi spécifier directement les tâches dans le repère de l'objet manipulé pour faciliter l'élaboration de notre consigne. Dans l'optique de valider cette méthode sur un robot réel, nous formulons le problème d'estimation des paramètres inertiels d'un objet manipulé grâce à l'algèbre vectorielle spatiale. Finalement, nous validons nos travaux sur les robots HRP2-10 et HRP4. Sur le premier robot, nous validons la génération de posture et la génération de mouvement mono-robot sur le scénario demonté d'une échelle verticale aux normes industrielles. La manipulation d'objets et l'estimation des paramètres inertiels sont validées par la suite sur le robot HRP4. / This PhD proposes a whole body motion generation approach with non coplanar contacts that allowsa robot to move in an environment, manipulate complex objects or collaborate with differentagents.Methods developed in this PhD try to manage many kinds of robots, from the humanoid to thefixed base manipulator and also handling underactuated objects.Firstly, we address the problem contacts positioning that an underactuated robot should taketo move in its environment.We compute in one non-linear optimization problem a sequence of postures that fulfill aninputed contact list. This formulation allows to find the optimal contact placement regardingprevious and next stances. It also allows to execute a task for some posture while taking into accountthe priority of the motion.Next, we introduce a motion generation method that uses quadratic programming to solveinverse kinematics and dynamics problems for a fixed or mobile base robot under equality andinequality constraints.This motion generation is fast enough to fit the HRP2-10 and HRP4 control loop andcan be used in real-time.With a finite state machine we turn the posture sequence into a list of tasks that should beexecuted by the motion generation to allow a robot to move in a complex environment.We extend this motion generation scheme to compute the motion of an arbitrary number of robots.This extension allows us to manage complex object manipulation tasks, multi-agent collaboration andmotion in a dynamic environment. We can also specify a task in the manipulated object frameto ease motion design.To validate this method on a real robot, we formulate inertial parametersestimation of manipulated objects with spatial vector algebra.Finally, we validate our works on the HRP2-10 and HRP4 robot. On the first one,we validate the posture and mono-robot motion generation on a scenario where the robot climbs anindustry standard vertical ladder.On the second one, we validate object manipulation and inertial parameters estimation.
2

De l'Autonomie des Robots Humanoïdes : Planification de Contacts pour Mouvements de Locomotion et Tâches de Manipulation

Bouyarmane, Karim 22 November 2011 (has links) (PDF)
Nous proposons une approche de planification unifiée pour robots humanoïdes réalisant des tâches de locomotion et de manipulation nécessitant une dextérité propre aux systèmes anthropomorphes. Ces tâches sont basées sur des transitions de contacts ; contacts entre les extrémités des membres locomoteurs et l'environnement dans le cas du problème de locomotion par exemple, ou entre les extrémités de l'organe préhensible effecteur et l'objet manipulé dans le cas du problème de manipulation. Nous planifions ces transitions de contacts pour des systèmes abstraits constitués d'autant de robots, d'objets, et de supports dans l'environnement que désiré/nécessaire pour la modélisation du problème. Cette approche permet de s'affranchir de la distinction de nature entre tâches de locomotion et de manipulation et s'étend à une variété d'autres problèmes tels que la coopération entre plusieurs agents. Nous introduisons notre paradigme de planification non-découplée de locomotion et de manipulation en exhibant la stratification induite dans l'espace des configurations de systèmes simplifiés pour lesquels nous résolvons analytiquement le problème en comparant des méthodes de planification géométrique, non-holonome, et dynamique. Nous présentons ensuite l'algorithme de planification de contacts basé sur une recherche best-first. Cet algorithme fait appel à un solveur de cinématique inverse qui prend en compte des configurations de contacts générales dans l'espace pouvant être établis entre robots, objets, et environnement dans toutes les combinaisons possibles, le tout sous contraintes d'équilibre statique et de respect des limitations mécaniques des robots. La génération de mouvement respectant l'équation de dynamique Lagrangienne est obtenue par une formulation en programme quadratique. Enfin nous envisageons une extension à des supports de contact déformables en considérant des comportements linéaires-élastiques résolus par éléments finis.
3

Vision based motion generation for humanoid robots

Stasse, Olivier 04 April 2013 (has links) (PDF)
Ce manuscrit présente mes activités de recherche sur les comportements basés vision pour des robots complexes comme les robots humanoïdes. La question scientifique sous-jacente qui structure ce travail est la suivante: " Quels sont les processus de décisions qui permettent à un robot humanoïde de générer des mouvements en temps réel basés sur des informations visuelles ?" Au football, les êtres humains peuvent décider de frapper une balle alors qu'ils courent et que tous les autres joueurs sont constamment en train de bouger. Reformuler comme un problème d'optimisation pour un robot humanoïde, trouver une solution pour un tel comportement est généralement très difficile du point de vue calculatoire. Par exemple, le problème de la recherche visuelle a été démontré comme étant NP-complet. La première partie de ce travail concerne la génération de mouvements temps réel. Partant des contraintes générales qu'un robot humanoïde doit remplir pour générer un mouvement faisable, des problèmes fondamentaux sont présentés. A partir de ceux-ci, plusieurs contributions permettant à un robot humanoïde de réagira à des changements de l'environnement sont présentés. Ils concernent la génération de la marche, les mouvements corps complets pour éviter des obstacles, et la planification de pas en temps réel dans des environnements contraints. La deuxième partie de ce travail concerne l'acquisition temps-réel de connaissance sur l'environnement à partir de la vision par ordinateur. Deux comportements principaux sont considérés: la recherche visuelle et la construction d'un modèle visuel d'un objet. Ils sont considérés tout en prenant compte le modèle du capteur, le coût du mouvement, les contraintes mécaniques du robot, la géométrie de l'environnement ainsi que les limitations du processus de vision. De plus des contributions sur le couplage de l'auto-localisation basé cartes avec la marche, la génération de pas basé sur l'asservissement visuel seront présentés. Finalement les technologies centrales développées dans les contextes précédents ont été utilisées dans différentes applications: l'interaction homme-robot, la téléopération, l'analyse de mouvement humains. Basé sur le retour d'expérience de plusieurs démonstrateurs intégrés sur le robot humanoïde HRP-2, la dernière partie de cette thèse proposent des pistes pour des idées permettant de lever les verrous technologiques actuels de la robotique humanoïde.
4

De l'Autonomie des Robots Humanoïdes : Planification de Contacts pour Mouvements de Locomotion et Tâches de Manipulation / On Autonomous Behaviour of Humanoid Robots : Contact Planning for Locomotion and Manipulation

Bouyarmane, Karim 22 November 2011 (has links)
Nous proposons une approche de planification unifiée pour robots humanoïdes réalisant des tâches de locomotion et de manipulation nécessitant une dextérité propre aux systèmes anthropomorphes. Ces tâches sont basées sur des transitions de contacts ; contacts entre les extrémités des membres locomoteurs et l'environnement dans le cas du problème de locomotion par exemple, ou entre les extrémités de l'organe préhensible effecteur et l'objet manipulé dans le cas du problème de manipulation. Nous planifions ces transitions de contacts pour des systèmes abstraits constitués d'autant de robots, d'objets, et de supports dans l'environnement que désiré/nécessaire pour la modélisation du problème. Cette approche permet de s'affranchir de la distinction de nature entre tâches de locomotion et de manipulation et s'étend à une variété d'autres problèmes tels que la coopération entre plusieurs agents. Nous introduisons notre paradigme de planification non-découplée de locomotion et de manipulation en exhibant la stratification induite dans l'espace des configurations de systèmes simplifiés pour lesquels nous résolvons analytiquement le problème en comparant des méthodes de planification géométrique, non-holonome, et dynamique. Nous présentons ensuite l'algorithme de planification de contacts basé sur une recherche best-first. Cet algorithme fait appel à un solveur de cinématique inverse qui prend en compte des configurations de contacts générales dans l'espace pouvant être établis entre robots, objets, et environnement dans toutes les combinaisons possibles, le tout sous contraintes d'équilibre statique et de respect des limitations mécaniques des robots. La génération de mouvement respectant l'équation de dynamique Lagrangienne est obtenue par une formulation en programme quadratique. Enfin nous envisageons une extension à des supports de contact déformables en considérant des comportements linéaires-élastiques résolus par éléments finis. / We propose a unified planning approach for autonomous humanoid robots that perform dexterous locomotion and manipulation tasks. These tasks are based on contact transitions; for instance between the locomotion limbs of the robot and the environment, or between the manipulation end-effector of the robot and the manipulated object. We plan these contact transitions for general abstract systems made of arbitrary numbers of robots, manipulated objects, and environment supports. This approach allows us to erase distinction between the locomotion and manipulation nature of the tasks and to extend the method to various other planning problems such as collaborative manipulation and locomotion between multiple agents. We introduce our non-decoupled locomotion-and-manipulation planning paradigm by exhibiting the induced stratification of the configuration space of example simplified systems for which we analytically solve the problem comparing geometric path planning, kinematic non-holonomic planning, and dynamic trajectory planning methods. We then present the contact planning algorithm based on best-first search. The algorithm relies on an inverse kinematics solver that handles general robot-robot, robot-object, robot-environment, object-environment, non-horizontal, non-coplanar, friction-based, multi-contact configurations, under static equilibrium and physical limitation constraints. The continuous dynamics-consistent motion is generated in the locomotion case using a quadratic programming formulation. We finally envision the extension to deformable environment contact support by considering linear elasticity behaviours solved using the finite element method.
5

Utilisation des relations spatiales pour l'analyse et l'édition de mouvement

Le Naour, Thibaut 09 December 2013 (has links) (PDF)
L'animation de personnages virtuels guidée par des données fait l'objet de nombreuses études dans le domaine de l'informatique graphique. Dans ce contexte, le mouvement est classiquement défini par une suite de squelettes au cours du temps, chacun étant décrit par un vecteur de positions et de rotations. Le maillage 3D est ensuite guidé par les squelettes au moyen d'un couplage défini explicitement. L'enchaînement des différentes étapes de ce processus est difficile à mettre en oeuvre, et conduit à des approximations et des erreurs de modélisation, à la fois au niveau de l'animation du squelette et de la déformation du maillage. Dans ce manuscrit nous proposons d'étudier d'autres représentations du mouvement par le biais d'un ensemble de relations spatiales. Cette approche nous permet de tenir compte implicitement de contraintes de distance entre les points de la structure articulée, du maillage et de l'environnement, et d'exprimer en particulier la notion de contact. Deux axes d'étude sont principalement abordés~: le premier considère le mouvement dans l'espace métrique, et le second caractérise chaque posture par son information différentielle dans l'espace Laplacien. Dans un premier temps, nous proposons de représenter les squelettes associés aux postures du mouvement par un ensemble de distances. Caractériser une telle structure dans l'espace métrique se ramène à un formalisme mathématique connu sous le nom de problème de la géométrie des distances. Ainsi, nous nous inspirons des différentes techniques existantes et les appliquons au contrôle du mouvement. L'objectif est de produire de nouveaux mouvements à partir de processus d'édition ou d'inversion cinématique. Nous montrons que cette représentation permet un contrôle simple et intuitif de l'animation d'un personnage. Elle possède également plusieurs propriétés exploitables dans le cadre de l'analyse du mouvement. Ce dernier point est illustré par une application originale de recherche de mouvements dans des grandes bases de données. Dans un second temps, nous définissons le mouvement par un ensemble de graphes dont les sommets sont caractérisés par une information différentielle. A travers cette représentation, nous proposons une nouvelle méthode d'édition du mouvement couplant des contraintes de distance avec l'opérateur Laplacien discret. Cet opérateur permet de préserver les relations spatiales lors de l'édition du mouvement alors que les contraintes de distance préservent certaines propriétés inhérentes au squelette. Ce concept donne lieu à plusieurs applications dédiées à la reconstruction et l'édition de mouvement : (i) l'édition interactive d'animation de squelette, où nous proposons d'éditer tout type de mouvement avec de fortes déformations tout en préservant l'information spatio-temporelle ; (ii) la reconstruction de trajectoires de marqueurs~: en faisant l'hypothèse qu'il existe un lien entre la trajectoire d'un marqueur et celles de ses voisins, nous proposons de reconstruire les trajectoires incomplètes ; (iii) l'animation de maillage où nous proposons un nouveau processus d'animation directement guidé par les trajectoires des marqueurs.

Page generated in 0.1072 seconds