Spelling suggestions: "subject:"géométrie dess surfaces"" "subject:"géométrie deus surfaces""
1 |
Algorithmes et généricité dans les groupes de tresses / Algorithms and genericity in the braid groupsCaruso, Sandrine 22 October 2013 (has links)
La théorie des groupes de tresses s'inscrit au croisement de plusieurs domaines des mathématiques, en particulier, l'algèbre et la géométrie. La recherche actuelle s'étend dans chacune de ces directions, et de riches développements naissent du mariage de ces deux aspects. D'un point de vue géométrique, le groupe des tresses à n brins est vu comme le groupe modulaire d'un disque à n trous, avec composante de bord. On peut représenter une tresse par un diagramme de courbes, c'est-à-dire l'image d'une famille fixée d'arcs sur le disque, par l'élément correspondant du groupe modulaire. Dans cette thèse est présenté l'algorithme de relaxations par la droite, qui permet de retrouver, étant donné un diagramme de courbes, la tresse à partir de laquelle il a été obtenu. Cet algorithme aide à faire le lien entre des propriétés géométriques du diagramme de courbes, et des propriétés algébriques du mot de tresse, en permettant de repérer de grandes puissances d'un générateur sous forme de spirales dans le diagramme de courbes. D'un point de vue algébrique, le groupe de tresses est l'exemple classique de groupe de Garside. L'un des objectifs actuels des recherches en théorie de Garside est d'obtenir un algorithme de résolution en temps polynomial du problème de conjugaison dans les groupes de tresses. À cette fin, on cherche à exploiter les propriétés de certains ensembles finis de conjugués d'une tresse, qui sont des invariants de conjugaison. L'un des résultats de cette thèse concerne la taille d'un de ces invariants, l'ensemble super-sommital : on exhibe une famille de tresses pseudo-anosoviennes dont l'ensemble super-sommital est de taille exponentielle. González-Meneses avait déjà établi le résultat similaire pour une famille de tresses réductibles. La conséquence de ces résultats est qu'on ne peut pas espérer résoudre le problème de conjugaison en temps polynomial au moyen de cet ensemble, et qu'il vaut mieux chercher à exploiter des invariants plus petits. Dans le cas des tresses pseudo-anosoviennes, des espoirs résident actuellement en l'ensemble des circuits glissants. Dans cette thèse, un algorithme en temps polynomial s'appuyant sur ce dernier ensemble résout génériquement le problème de conjugaison, c'est-à-dire qu'il le résout pour une proportion de tresses tendant exponentiellement vite vers 1 lorsque la longueur de la tresse tend vers l'infini. On montre également que, dans une boule du graphe de Cayley avec pour générateurs les tresses simples, une tresse générique est pseudo-anosovienne, ce qui était une conjecture bien connue des spécialistes de la théorie de Garside. / The theory of braid groups is at the intersection of several areas of mathematics, especially algebra and geometry. The current research extends in each of these directions, leading to rich developments. From a geometrical point of view, the braid group on n strands is seen as the mapping class group of a disc with n punctures, with boundary component. A braid can be represented by a curve diagram, that is to say, the image of a family of arcs attached to the disc, by the corresponding mapping class. In this thesis we present the algorithm of relaxations from the right, which, given a curve diagram, determines the braid from which it was obtained. This algorithm helps us to make the link between geometric properties of the curve diagram and algebraic properties of the braid word, allowing us to identify great powers of a generator as spirals in the curve diagram. From an algebraic point of view, the braid group is the classical example of a Garside group. One of the objectives of current research in Garside theory is to obtain a polynomial time algorithm to solve the conjugacy problem in braid groups. For this, a possibility is to exploit the properties of some finite sets of conjugates of a braid, which are invariants of the conjugacy classes. One of the results of this thesis concerns the size of one of these invariants, the super summit set: we construct a family of pseudo-Anosov braids whose super summit set has exponential size. González- Meneses had already established the similar result for a family of reducible braids. These results implies that we cannot hope to solve the conjugacy problem in polynomial time through this set, and it is better to try to use smaller invariants. In the case of pseudo-Anosov braids, one may hope that the so-called sliding circuit set is more useful. In this thesis, we present a polynomial time algorithm based on this last set which generically solves the conjugacy problem, that is to say, it solves it for a proportion of braids that tends exponentially fast to 1 as the length of the braid tends to infinity. We also show that, in a ball of the Cayley graph with generators the simple braids, a braid is generically pseudo-Anosov, which was a well-known conjecture for the specialists in Garside theory.
|
2 |
Algorithmes et généricité dans les groupes de tressesCaruso, Sandrine 22 October 2013 (has links) (PDF)
La théorie des groupes de tresses s'inscrit au croisement de plusieurs domaines des mathématiques, en particulier, l'algèbre et la géométrie. La recherche actuelle s'étend dans chacune de ces directions, et de riches développements naissent du mariage de ces deux aspects. D'un point de vue géométrique, le groupe des tresses à n brins est vu comme le groupe modulaire d'un disque à n trous, avec composante de bord. On peut représenter une tresse par un diagramme de courbes, c'est-à-dire l'image d'une famille fixée d'arcs sur le disque, par l'élément correspondant du groupe modulaire. Dans cette thèse est présenté l'algorithme de relaxations par la droite, qui permet de retrouver, étant donné un diagramme de courbes, la tresse à partir de laquelle il a été obtenu. Cet algorithme aide à faire le lien entre des propriétés géométriques du diagramme de courbes, et des propriétés algébriques du mot de tresse, en permettant de repérer de grandes puissances d'un générateur sous forme de spirales dans le diagramme de courbes. D'un point de vue algébrique, le groupe de tresses est l'exemple classique de groupe de Garside. L'un des objectifs actuels des recherches en théorie de Garside est d'obtenir un algorithme de résolution en temps polynomial du problème de conjugaison dans les groupes de tresses. À cette fin, on cherche à exploiter les propriétés de certains ensembles finis de conjugués d'une tresse, qui sont des invariants de conjugaison. L'un des résultats de cette thèse concerne la taille d'un de ces invariants, l'ensemble super-sommital : on exhibe une famille de tresses pseudo-anosoviennes dont l'ensemble super-sommital est de taille exponentielle. González-Meneses avait déjà établi le résultat similaire pour une famille de tresses réductibles. La conséquence de ces résultats est qu'on ne peut pas espérer résoudre le problème de conjugaison en temps polynomial au moyen de cet ensemble, et qu'il vaut mieux chercher à exploiter des invariants plus petits. Dans le cas des tresses pseudo-anosoviennes, des espoirs résident actuellement en l'ensemble des circuits glissants. Dans cette thèse, un algorithme en temps polynomial s'appuyant sur ce dernier ensemble résout génériquement le problème de conjugaison, c'est-à-dire qu'il le résout pour une proportion de tresses tendant exponentiellement vite vers 1 lorsque la longueur de la tresse tend vers l'infini. On montre également que, dans une boule du graphe de Cayley avec pour générateurs les tresses simples, une tresse générique est pseudo-anosovienne, ce qui était une conjecture bien connue des spécialistes de la théorie de Garside.
|
3 |
Propriétés géométriques des surfaces associées aux solutions des modèles sigma grassmanniens en deux dimensionsDelisle, Laurent 08 1900 (has links)
Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n).
Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques.
Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens.
Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics.
Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics.
Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics. / In this Ph. D. thesis, we analyze the geometric properties of surfaces obtained from the classical solutions of the two-dimensional bosonic and supersymmetric sigma models which has Grassmann manifolds G(m,n) as target space. In particular, we consider the metric, the fundamental forms and the gaussian curvature induced by these surfaces which naturally live in the su(n) Lie algebra.
The first chapter presents some preliminary tools to understand the elements of the following chapters. We present non-abelian gauge theories and bosonic grassmannian sigma models as well as its supersymmetric counterpart. Another section presents a construction of surfaces in the Lie algebra su(n) from the solutions of the bosonic sigma models.
The three last chapters contained in this thesis presents the constraints that have to be imposed on the solutions of the models in order to generate constant gaussian curvature surfaces. From these constraints, we can give a classification of the solutions depending on the possible values of the curvature. The first two papers presents an investigation of these surfaces and of their associated solutions for the bosonic grassmannian sigma models. In the third paper, we generalize our approach to a supersymmetric extension of the bosonic CP^(n-1)= G(1,n) sigma model including some results for the general Grassmann manifold G(m,n).
In chapter 2, we study the geometric properties of surfaces associated to holomorphic solutions of the grassmannian sigma models. We give a complete classification of these constant curvature solutions for the particular models G(2,n) with n=3,4,5. Furthermore, we establish two conjectures on the possible values of the gaussian curvature. We also give some elements of proof for these conjectures in terms of Plücker coordinates and immersions as well as Veronese curves. These results are published in the Journal of Geometry and Physics.
The third chapter presents a similar analysis as in the second chapter in the case of non-holomorphic solutions of the bosonic grassmannian sigma models. This work generalizes the results obtained in the first paper and give a systematic algorithm to obtain such surfaces from the known solutions of the models. These results are published in the Journal of Geometry and Physics.
In the last chapter of this thesis, we consider a N=2 supersymmetric extension of the bosonic sigma model which has the CP^(n-1)=G(1,n) manifold as target space. This chapter presents a geometric description of the surfaces obtained from the solutions of the model and shows, in the holomorphic case, that they have constant gaussian curvature if and only if the solutions consists of a generalization of the Veronese curve. Furthermore, using a gauge invariant formulation of the model in terms of orthogonal projectors, we obtain explicit non-holomorphic solutions and study the geometry of their associated surfaces. These results are submitted to Communications in Mathematical Physics.
|
Page generated in 0.0829 seconds