Spelling suggestions: "subject:"géometrie spectral"" "subject:"géometries spectral""
1 |
Problèmes spectraux avec conditions de Robin sur des domaines à coins du plan / Spectral problems with Robin boundary conditions on planar domains with cornersKhalile, Magda 21 September 2018 (has links)
Dans cette thèse, nous étudions les propriétés spectrales du Laplacien avec la condition de bord de Robin attractive sur des domaines du plan à coins. Notre but est de comprendre l’influence des coins convexes sur l’asymptotique des valeurs propres de cet opérateur lorsque le paramètre de Robin est grand. Nous montrons en particulier que l’asymptotique des premières valeurs propres de Robin sur des polygones curvilignes est déterminée par des opérateurs modèles : les Laplaciens agissant sur les secteurs tangents au domaine. Pour une certaine classe de polygones droits, nous montrons l’existence d’un opérateur effectif sur le bord du domaine qui détermine l’asymptotique des valeurs propres suivantes. Enfin, des asymptotiques de Weyl pour différents seuils dépendant du paramètre de Robin sont obtenues. / In this thesis, we are interested in the spectral properties of the Laplacian with the attractive Robin boundary condition on planar domains with corners. The aim is to understand the influence of the convex corners on the spectral properties of this operator when the Robin parameter is large. In particular, we show that the asymptotics of the first Robin eigenvalues on curvilinear polygons is determined by model operators: the Robin Laplacians acting on infinite sectors. For a particular class of polygons with straight edges, we prove the existence of an effective operator acting on the boundary of the domain and determining the asymptotics of the further eigenvalues. Finally, some Weyl-type asymptotics for different thresholds depending on the Robin parameter are obtained.
|
Page generated in 0.0592 seconds