• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hyperspectral Image Analysis Algorithm for Characterizing Human Tissue

Wondim, Yonas kassaw January 2011 (has links)
AbstractIn the field of Biomedical Optics measurement of tissue optical properties, like absorption, scattering, and reduced scattering coefficient, has gained importance for therapeutic and diagnostic applications. Accuracy in determining the optical properties is of vital importance to quantitatively determine chromophores in tissue.There are different techniques used to quantify tissue chromophores. Reflectance spectroscopy is one of the most common methods to rapidly and accurately characterize the blood amount and oxygen saturation in the microcirculation. With a hyper spectral imaging (HSI) device it is possible to capture images with spectral information that depends both on tissue absorption and scattering. To analyze this data software that accounts for both absorption and scattering event needs to be developed.In this thesis work an HSI algorithm, capable of assessing tissue oxygenation while accounting for both tissue absorption and scattering, is developed. The complete imaging system comprises: a light source, a liquid crystal tunable filter (LCTF), a camera lens, a CCD camera, control units and power supply for light source and filter, and a computer.This work also presents a Graphic processing Unit (GPU) implementation of the developed HSI algorithm, which is found computationally demanding. It is found that the GPU implementation outperforms the Matlab “lsqnonneg” function by the order of 5-7X.At the end, the HSI system and the developed algorithm is evaluated in two experiments. In the first experiment the concentration of chromophores is assessed while occluding the finger tip. In the second experiment the skin is provoked by UV light while checking for Erythema development by analyzing the oxyhemoglobin image at different point of time. In this experiment the melanin concentration change is also checked at different point of time from exposure.It is found that the result matches the theory in the time dependent change of oxyhemoglobin and deoxyhemoglobin. However, the result of melanin does not correspond to the theoretically expected result.

Page generated in 0.0341 seconds