• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Post- and Presynaptic GABA(B) Receptor Activation in Neonatal Rat Rostral Ventrolateral Medulla Neurons in Vitro

Lin, H. H., Dun, N. J. 21 May 1998 (has links)
Whole-cell patch recordings were made from immature (six- to 12-day- old) rat rostral ventrolateral medulla neurons in brainstem slices. GABA or the specific GABA(B) receptor agonist (-)baclofen (10-50 μM) by superfusion or by pressure ejection induced an outward current or a hyperpolarization, which persisted in a tetrodotoxin (0.3 μM)-containing Krebs' solution in nearly every cell tested. The GABA(B) receptor antagonists 2-hydroxy saclofen (50-200 μM) and CGP 35348 (50-200 μM) dose-dependently suppressed baclofen- currents. Baclofen-currents were suppressed by barium (1 mM) but not by tetraethylammonium (20 mM), low Ca2+ (0.24 mM) solution or in a solution containing the Ca2+ chelator BAPTA-AM (10 μM). The outward current had an estimated reversal potential of -98, -77 and -52 mV in 3.1, 7 and 15 mM [K+](o). Pre-incubation of slices with pertussis toxin (500 μg/ml for 5-7 h) or intracellular dialysis with GDP-β-S (500 μM) markedly reduced baclofen-currents. Baclofen in low concentrations (1-3 μM) that caused slight or no change of holding currents and of inward or outward currents induced by exogenously applied glutamate or glycine/GABA, decreased excitatory and inhibitory postsynaptic currents by an average of 86.5 ± 4.3% and 78.4 ± 2.7%. The GABA(B) antagonist CGP 35348 (100 μM) increased the excitatory postsynaptic currents by an average of 64%, without causing a significant change in holding currents in 10/18 cells tested. Our results indicate the presence of post- and presynaptic GABA(B) receptors in the rostral ventrolateral medulla neurons. Activation of postsynaptic GABA(B) receptors induces an outward K+ current which is barium-sensitive, Ca2+- independent and may be coupled to a pertussis-sensitive G-protein. Activation of presynaptic GABA(B) receptors attenuates excitatory or inhibitory synaptic transmission. More importantly, the observation that CGP 35348 enhanced excitatory synaptic currents implies a removal of tonic activation of presynaptic GABA(B) receptors by endogenously released GABA (disinhibition), supporting the hypothesis that these receptors may have a physiological role in regulating the input and output ratio in a subset of rostral ventrolateral medulla neurons in vivo.

Page generated in 0.0409 seconds