• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 40
  • 37
  • 11
  • 10
  • 7
  • 5
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 319
  • 74
  • 61
  • 57
  • 53
  • 43
  • 35
  • 33
  • 29
  • 27
  • 26
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Beiträge zu makromolekularen Kontrastmitteln für die Magnetresonanztomographie / Contributions to the synthesis of macromolecular contrast agents for magnetic resonance imaging

Werner, Anne January 2010 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Synthese heptadentater Ligandsysteme für die Magnetresonanztomographie. Neben der Synthese von Gadolinium- und Mangankomplexen stand die Entwicklung makromolekularer Kontrastmittel auf Dendrimerbasis im Mittelpunkt dieser Arbeit. / This thesis deals with the synthesis of heptadentate ligand systems for magnetic resonance imaging. In addition to synthesizing gadolinium and manganese complexes, the development of macromolecular contrast agents based on dendrimers was the main goal of this work.
42

Effect of extracellular vesicles on cancer cell lines in vitro and biodistribution in an ectopic osteosarcoma mouse model

Javier, Abello January 1900 (has links)
Doctor of Philosophy / Department of Food, Nutrition, Dietetics and Health / Tonatiuh Melgarejo / Mark Haub / Human umbilical cord-derived mesenchymal stromal cells (HUC-MSCs) have an enormous therapeutic potential because of their immunomodulatory and anti-inflammatory properties. However, there are limitations for their therapeutic use due to low cell survival after implantation, the risk of culture-borne pathogens, and the risk of embolism and thrombosis after intravenous infusion. Exosomes, on the other hand, constitute an important part of the MSCs secretome and may play a role in their therapeutic effects. Here, it was demonstrated that HUC-MSC-derived exosomes accumulate in human and mouse osteosarcoma cell lines in vitro and reduce their proliferation. The distribution of HUC-MSCs exosomes was shown in osteosarcoma tumor- bearing mice. Exosome distribution in vivo was observed using Magnetic Resonance Imaging (MRI) of gadolinium-labeled exosomes and by fluorescent imaging after infusion of near infrared dye-labeled exosomes. HUC-MSC exosomes accumulated in the tumor throughout the 48 hours ours post-injection period. In contrast, synthetic lipid nanoparticle accumulate in tumor only for the first 3ours post-injection. These results suggest that labeling with gadolinium or near-infrared dye may affect exosome accumulation within the spleen. In summary, this study showed that HUC-MSCs exosomes can accumulate to osteosarcoma cells in vitro and in vivo, and thus they may be useful for detecting cancer metastasis.
43

Gold Nanoconstructs for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

Coughlin, Andrew 16 September 2013 (has links)
Cancer accounts for nearly 1 out of every 4 deaths in the United States, and because conventional treatments are limited by morbidity and off-target toxicities, improvements in cancer management are needed. This thesis further develops nanoparticle-assisted photothermal therapy (NAPT) as a viable treatment option for cancer patients. NAPT enables localized ablation of disease because heat generation only occurs where tissue permissive near-infrared (NIR) light and absorbing nanoparticles are combined, leaving surrounding normal tissue unharmed. Two principle approaches were investigated to improve the specificity of this technique: multimodal imaging and molecular targeting. Multimodal imaging affords the ability to guide NIR laser application for site-specific NAPT and more holistic characterization of disease by combining the advantages of several diagnostic technologies. Towards the goal of image-guided NAPT, gadolinium-conjugated gold-silica nanoshells were engineered and demonstrated to enhance imaging contrast across a range of diagnostic modes, including T1-weighted magnetic resonance imaging, X-Ray, optical coherence tomography, reflective confocal microscopy, and two-photon luminescence in vitro as well as within an animal tumor model. Additionally, the nanoparticle conjugates were shown to effectively convert NIR light to heat for applications in photothermal therapy. Therefore, the broad utility of gadolinium-nanoshells for anatomic localization of tissue lesions, molecular characterization of malignancy, and mediators of ablation was established. Molecular targeting strategies may also improve NAPT by promoting nanoparticle uptake and retention within tumors and enhancing specificity when malignant and normal tissue interdigitate. Here, ephrinA1 protein ligands were conjugated to nanoshell surfaces for particle homing to overexpressed EphA2 receptors on prostate cancer cells. In vitro, successful targeting and subsequent photothermal ablation of prostate cancer cells was achieved with negligible nanoshell binding to normal cells. In vivo however, ephrinA1-nanoshells did not promote enhanced therapeutic outcomes in mice bearing subcutaneous prostate cancer tumors treated with NAPT compared to nontargeted particles. Nonetheless, both treatment groups demonstrated effective ablation of prostate tumors, as evidenced by tumor tissue regression. Further investigation is warranted to overcome probable protein immunogenicity that offsets ephrinA1 targeting in vivo. With future study, photothermal therapy with multimodal gadolinium-conjugated and molecularly targeted nanoshells may offer a viable treatment option for cancer patients in the clinic.
44

The synthesis, design, and applications of lanthanide cored complexes /

Phelan, Gregory David, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 99-107).
45

Gadolinium concentration analysis in a brain phantom by X-ray fluorescence : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Medical Physics, Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand /

Almalki, Musaed Alie Othman. January 2008 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references (p. 126-133).
46

Electron paramagnetic resonance study of Gd³⁺ in single crystals of yttrium vanadate (YVO₄)

Zhao, Xinghai. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vi, 43 p. : ill. Includes abstract. Includes bibliographical references (p. 29).
47

Protein Modification of Designed MRI Contrast Agents

Purser, Corrie N 16 December 2015 (has links)
Protein based contrast agents (ProCAs) developed by the Yang lab exhibit unique capabilities in enabling magnetic resonance imaging (MRI) with significantly improved sensitivity and targeting capabilities by utilizing biomarkers which can target various carcinomas in animals. Further clinical in vivo human applications require modifications of these designed contrast agents to further improve organ and tissue biodistribution, biomarker and cell targeting capabilities, and reduction of immunogenicity. The aim of this thesis is to develop a novel protein modification on ProCA by glycosylation to improve liver distribution by targeting liver receptor, asialoglycoprotein receptor (ASGPR). Rat and humanized first generation and humanized third generation ProCA were expressed and purified using either glutathione s-transferase (GST) tagged or taggless methods. Rat ProCA1, rProCA1, was then used to optimize glycan modification with glycosylation achieved at the highest level using a 100:1 molar ratio and three lysine residues. Similar to non-modified rProCA1 and PEGylated rProCA1, metal binding affinity of gadolinium for glycan modified rProCA1, Glyco-rProCA1, was found to be 9.49 x 10-12 M, and relaxivity was found to be greater than clinically available contrast agents with 34.08 and 42.67 mM-1s-1 for r1 and r2 respectively. Glycosylation of rProCA1 has significantly increased human serum stability, and we have achieved significant liver MRI enhancement via tail vein injection due to high ASGPR expression in the liver altering biodistribution of glycan modified ProCA, and we have also imaged uptake in the secretory glands. These biodistribution changes were noted by immunohistochemistry (IHC) staining which was found to stain liver sinusoid with spaces in between. The distribution to the liver was further confirmed via inductively coupled plasma optical emission spectrometry (ICP-OES) which shows Glyco-rProCA1 has significant uptake of gadolinium in the liver tissue. This study represents the first achievement of in vivo liver imaging by glycosylation using a lactose targeting moiety covalently bonded to protein contrast agents for MRI showing promise for future more specific targeting or whole body imaging capabilities.
48

Rôle des complexes de gadolinium dans le mécanisme de la fibrose systémique néphrogénique / Role of gadolinium complexes in the mechanism of nephrogenic systemic fibrosis

Fretellier, Nathalie 19 June 2013 (has links)
La fibrose systémique néphrogénique (FSN) est une maladie rare et relativement récente, observée uniquement chez des patients souffrant d’insuffisance rénale sévère ou terminale. Elle est liée à l’administration d’une certaine catégorie de complexes de gadolinium (CG), les CGs thermodynamiquement moins stables, utilisés comme produits de contraste pour l’imagerie par résonance magnétique. L’hypothèse mécanistique la plus couramment citée concerne les effets profibrosants du Gd3+ « libre » après dissociation in vivo des CGs les moins stables mais il n’en existe pas de démonstration formelle. La physiopathologie de cette maladie reste mal connue, notamment par manque de modèles précliniques pertinents. Les travaux de cette thèse répondent donc à la nécessité d’approfondir nos connaissances concernant les relations entre les propriétés physicochimiques des CGs (structure, stabilité) et le risque de toxicité chronique, afin de mieux comprendre leur rôle dans le mécanisme de la FSN. Nous avons mis aux points plusieurs modèles de FSN chez le Rat. Nous avons aussi comparé les effets de toutes les catégories structurales des CGs sur ces modèles. Une toxicité systémique importante et la survenue de lésions cutanées macroscopiques et d’une fibrose du derme sont notées après administration de gadodiamide (un CG linéaire et ionique de faible stabilité), ce qui est cohérent avec le fait que la grande majorité des cas de FSN sont associés à cet agent. Nous avons aussi montré que cette toxicité dépend du degré d’insuffisance rénale et que l’hyperphosphatémie sensibilise les animaux aux effets profibrosants du gadodiamide. Nos données suggèrent donc que ces facteurs associés sont des facteurs de risque de la FSN. Nous avons observé la dissociation progressive in vivo de deux CGs linéaires présentant une faible stabilité, le gadodiamide et l’acide gadopentétique, après administration chez le Rat insuffisant rénal, avec libération de Gd3+ sous forme libre et soluble. Les CGs macrocycliques sont restés stables. Nous avons confirmé cette stabilité sur du sérum de Rat et du sérum humain alors que le gadodiamide se dissocie in vitro. Nos données suggèrent aussi une interaction entre l’ion Gd3+ dissocié à partir du gadodiamide et les protéines sériques. Cette libération de Gd3+ est accélérée en présence d’une forte concentration de phosphate. Globalement, nos résultats suggèrent ainsi un rôle causal du Gd3+ libre dans les lésions cutanées observées chez les animaux insuffisants rénaux. Enfin, nous avons observé l’implication de la voie de signalisation canonique de TGFβ, le marqueur clé de la fibrose, uniquement chez des rats ayant reçu le gadodiamide et dont l’insuffisance rénale est modérée. Nos travaux sont donc en faveur de l’hypothèse mécanistique d’une dissociation des CGs peu stables. / Nephrogenic systemic fibrosis (NSF) is a rare systemic fibrosing disorder which has been described in patients with severe or end stage renal failure. NSF is associated with prior administration of certain gadolinium complexes (GCs), used as magnetic resonance imaging contrast agents, particularly those which have the lowest thermodynamic stability. The most widely accepted hypothesis regarding the mechanism is based on profibrotic effects of free Gd3+ following in vivo dissociation of the less stable GCs. Nevertheless, there is no conclusive evidence so far. The pathophysiology is not completely understood, especially due to the lack of relevant non-clinical models. The purpose of our thesis was to investigate the relationship between physicochemical properties of GCs (molecular structure, thermodynamic stability) and the risk of chronic toxicity (especially fibrosis), in order to enhance our understanding of their role in the mechanism of NSF. We have set-up various non-clinical models of NSF in renally-impaired rats. We also compared the effects of all categories of GCs on these models. A high systemic toxicity, associated with macroscopic skin lesions and dermal fibrosis, was observed after the administration of gadodiamide (a linear and nonionic GC with a low thermodynamic stability). Whereas more stable, macrocyclic GCs were well tolerated. These findings seem clinically-relevant because the vast majority of NSF cases are associated with gadodiamide. We also showed that systemic and skin toxicities depend on the baseline renal function, and that hyperphosphataemia sensitizes renally-impaired rats to the fibrotic effects of gadodiamide. Our data suggest that these factors are, actually, risk factors for NSF. We observed in vivo dissociation of two linear GCs, gadodiamide and gadopentetic acid, with gradual release of soluble Gd3+, in renally-impaired rats. Macrocyclic agents remained stable. This observation was also confirmed both in rat and human serum by the relaxometry technique. Our results are also consistent with an interaction between dissociated Gd3+ and serum proteins. We also demonstrated that elevated serum phosphate levels accelerates the release of Gd3+. Taken all together, our results suggest a causal role of dissociated Gd3+ in gadodiamide-induced skin lesions in renally-impaired rats. Finally, we identified the involvement of the canonical signaling pathway of TGFβ, the central mediator of the fibrotic response, in gadodiamide-treated rats with a moderate renal failure. Our work is consistent with a causal role of dissociated Gd in the mechanism of NSF.
49

Magnetic resonance imaging of RRx-001 pharmacodynamics in preclinical tumors

Raghunand, Natarajan, Scicinski, Jan, Guntle, Gerald P., Jagadish, Bhumasamudram, Mash, Eugene A., Bruckheimer, Elizabeth, Oronsky, Bryan, Korn, Ronald L. 13 June 2017 (has links)
RRx-001 is an anticancer agent that subjects cancer cells to reactive oxygen/nitrogen species (ROS/RNS) and acts as an epigenetic modifier. We have used a thiol-bearing MRI contrast agent, Gd-LC7-SH, to investigate the pharmacodynamics of RRx-001 in CHP-100 Ewing's Sarcoma, HT-29 colorectal carcinoma, and PANC-1 pancreatic carcinoma xenografts in SCID mice. Binding of Gd-LC7-SH to the Cys34 residue on plasma albumin prolongs retention in the tumor microenvironment and increases tumor enhancement on MRI. Mice were imaged by MRI and in vivo T1 maps acquired 50 min (T1(50 min)) after injection of 0.05 mmol/kg Gd-LC7-SH (i.v.) at baseline and 1, 24, and 72 h post-treatment with 10 mg/kg RRx-001 (i.v.). Consistent with an indirect thiol-modifying activity of RRx-001, tumor T150 min at 1 h post-drug was significantly longer than pre-drug tumor T150 min in all three tumor models, with the T150 min remaining significantly longer than baseline through 72 h post-drug in the HT-29 and PANC-1 tumors. The T150 min of CHP-100 tumors recovered to baseline by 24 h post-drug, suggesting a robust anti-oxidant response to the RRx-001 challenge that was presaged by a marked increase in perfusion at 1 h post-drug measured by DCE-MRI. MRI enhanced with Gd-LC7-SH provides a mechanistically rational biomarker of RRx-001 pharmacodynamics.
50

Cooling rapidly and relaxing slowly with 4f ions

Sharples, Joseph William January 2013 (has links)
Anisotropic magnetic materials have been proposed over the past twenty years or so as candidates for high density storage, so-called Single-Molecule Magnets (SMMs). These may in future be used to store data at the level of an individual molecule. Separately, isotropic materials may be harnessed for their large magnetocaloric effect which enables them to be used as refrigerants. This can potentially replace the increasingly rare and therefore expensive 3He and 4He currently employed either separately or in 3He-4He dilution refrigerators. This thesis examines the use of lanthanide(III) ions for these applications, by detailing the synthesis, characterisation and performance of three new classes of zero-dimensional compounds, {LnIII2}, {LnIII2ZnII4} and {LnIII7}. These are assessed by several techniques including SQUID magnetometry, heat capacity measurements luminescence spectroscopy, Electron Paramagnetic Resonance and ab initio calculations. In doing so we extended the use of a tripodal ligand widely employed in 3d chemistry to 4f ions, and found only the second 3d-4f phosphonate SMM. Investigating several members of a known three-dimensional lanthanide(III) polymer, {LnIII}n, showed the isotropic gadolinium(III) analogue is one of the very best of all known magnetic refrigerants in the low-temperature regime.

Page generated in 0.1718 seconds