1121 |
Computational study of arc discharges spark plug and railplug ignitors [sic] /Ekici, Özgür, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
1122 |
Traveling density variations in partially ionized gases.January 1964 (has links)
No description available.
|
1123 |
A microwave method of studying transient phenomena in ionized gasesJanuary 1947 (has links)
by M.A. Biondi and S.C. Brown. / "February 26, 1947." / Includes bibliographical references. / Army Signal Corps Contract No. W-36-039- sc-32037
|
1124 |
Observations of Atmospheric Gases Using Fourier Transform SpectrometersFu, Dejian January 2007 (has links)
Remote sensing of atmospheric gases improves our understanding of the state and evolution of the Earth’s environment. At the beginning of the thesis, the basic principles for the retrieval of concentrations of atmospheric gases from spectra are presented with a focus on ground-based observations. An overview of the characteristic features of different platforms, viewing geometries, measurement sites, and Fourier Transform Spectrometers (FTSs) used in the measurements are provided. The thesis covers four main projects.
The first study of the global distribution of atmospheric phosgene was carried out using a total of 5614 measured profiles from the satellite-borne Atmospheric Chemistry Experiment FTS (ACE-FTS) spanning the period February 2004 through May 2006. The phosgene concentrations display a zonally symmetric pattern with the maximum concentration located approximately over the equator, at about 25 km in altitude, and the concentrations decrease towards the poles. A layer of enhanced concentration of phosgene spans the lower stratosphere at all latitudes, with volume mixing ratios of 20-60 pptv. The reasons for the formation of the phosgene distribution pattern are explained by the insolation, lifetime of phosgene and the Brewer-Dobson circulation. The ACE observations show lower phosgene concentrations in the stratosphere than were obtained from previous observations in the 1980s and 1990s due to a significant decrease in source species.
The Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR) is a copy of the ACE-FTS that was designed for ground-based and balloon-borne measurements. The first balloon flight was part of the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) 2004 balloon payload. Some useful engineering information was obtained on the thermal performance of the instrument during the flight. As part of the MANTRA program, a ground-based inter-instrument comparison campaign was conducted with the objective of assessing instrument performance, and evaluating data processing routines and retrieval codes. PARIS-IR provides similar quality results for stratospheric species as does the University of Toronto FTS.
An advanced study was carried out for the Carbon Cycle science by Fourier Transform Spectroscopy (CC-FTS) mission, which is a proposed future satellite mission to obtain a better understanding of the sources and sinks of greenhouse gases in the Earth’s atmosphere by monitoring total and partial columns of CO2, CH4, N2O, and CO in the near infrared together with the molecular O2 column. To evaluate the spectral regions, resolution, optical components, and spectroscopic parameters required for the mission, ground-based Fourier transform spectra, recorded at Kiruna, Kitt Peak, and Waterloo, were used. Dry air volume mixing ratios of CO2 and CH4 were retrieved from the ground-based observations. A FTS with a spectral resolution of 0.1 cm-1, operating between 2000 and 15000 cm-1, is suggested as the primary instrument for the mission. Further progress in improving the atmospheric retrievals for CO2, CH4 and O2 requires new laboratory measurements to improve the spectroscopic line parameters.
Atmospheric observations were made with three FTSs at the Polar Environment Atmospheric Research Laboratory (PEARL) during spring 2006. The vertical column densities of O3, HCl, HNO3, HF, NO2, ClONO2 and NO from PARIS-IR, the Eureka DA8 FTS, and the ACE-FTS show good agreement. Chorine activation and denitrification in the Arctic atmosphere were observed in the extremely cold stratosphere near Eureka, Nunavut, Canada. The observed ozone depletion during the 2006 campaign was attributed to chemical removal.
|
1125 |
Observations of Atmospheric Gases Using Fourier Transform SpectrometersFu, Dejian January 2007 (has links)
Remote sensing of atmospheric gases improves our understanding of the state and evolution of the Earth’s environment. At the beginning of the thesis, the basic principles for the retrieval of concentrations of atmospheric gases from spectra are presented with a focus on ground-based observations. An overview of the characteristic features of different platforms, viewing geometries, measurement sites, and Fourier Transform Spectrometers (FTSs) used in the measurements are provided. The thesis covers four main projects.
The first study of the global distribution of atmospheric phosgene was carried out using a total of 5614 measured profiles from the satellite-borne Atmospheric Chemistry Experiment FTS (ACE-FTS) spanning the period February 2004 through May 2006. The phosgene concentrations display a zonally symmetric pattern with the maximum concentration located approximately over the equator, at about 25 km in altitude, and the concentrations decrease towards the poles. A layer of enhanced concentration of phosgene spans the lower stratosphere at all latitudes, with volume mixing ratios of 20-60 pptv. The reasons for the formation of the phosgene distribution pattern are explained by the insolation, lifetime of phosgene and the Brewer-Dobson circulation. The ACE observations show lower phosgene concentrations in the stratosphere than were obtained from previous observations in the 1980s and 1990s due to a significant decrease in source species.
The Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR) is a copy of the ACE-FTS that was designed for ground-based and balloon-borne measurements. The first balloon flight was part of the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) 2004 balloon payload. Some useful engineering information was obtained on the thermal performance of the instrument during the flight. As part of the MANTRA program, a ground-based inter-instrument comparison campaign was conducted with the objective of assessing instrument performance, and evaluating data processing routines and retrieval codes. PARIS-IR provides similar quality results for stratospheric species as does the University of Toronto FTS.
An advanced study was carried out for the Carbon Cycle science by Fourier Transform Spectroscopy (CC-FTS) mission, which is a proposed future satellite mission to obtain a better understanding of the sources and sinks of greenhouse gases in the Earth’s atmosphere by monitoring total and partial columns of CO2, CH4, N2O, and CO in the near infrared together with the molecular O2 column. To evaluate the spectral regions, resolution, optical components, and spectroscopic parameters required for the mission, ground-based Fourier transform spectra, recorded at Kiruna, Kitt Peak, and Waterloo, were used. Dry air volume mixing ratios of CO2 and CH4 were retrieved from the ground-based observations. A FTS with a spectral resolution of 0.1 cm-1, operating between 2000 and 15000 cm-1, is suggested as the primary instrument for the mission. Further progress in improving the atmospheric retrievals for CO2, CH4 and O2 requires new laboratory measurements to improve the spectroscopic line parameters.
Atmospheric observations were made with three FTSs at the Polar Environment Atmospheric Research Laboratory (PEARL) during spring 2006. The vertical column densities of O3, HCl, HNO3, HF, NO2, ClONO2 and NO from PARIS-IR, the Eureka DA8 FTS, and the ACE-FTS show good agreement. Chorine activation and denitrification in the Arctic atmosphere were observed in the extremely cold stratosphere near Eureka, Nunavut, Canada. The observed ozone depletion during the 2006 campaign was attributed to chemical removal.
|
1126 |
Poly(allylamine) and derivatives for co2 capture from flue gas or ultra dilute gas streams such as ambient airKhunsupat, Ratayakorn 07 July 2011 (has links)
Polymers rich in primary amine groups are proposed to be effective adsorbents for the reversible adsorption of CO2 from moderately dilute gas streams (10% CO2) and ultra-dilute gas streams (e.g. ambient air, 400 ppm CO2), with their performance under ultra-dilute conditions being competitive with or exceeding the state-of-the-art adsorbents based on supported poly(ethyleneimine) (PEI). The CO2 adsorption capacity (mmol CO2/g sorbent) and amine efficiency (mmol CO2/mmol amine) of linear poly(allylamine) (PAA), cross-linked poly(allylamine) prepared by post-polymerization crosslinking with epichlorohydrin (PAAEPI), and branched poly(allylamine) prepared by branching of poly(allylamine) with divinylbenzene (PAADVB) are presented here and compared with state-of-the-art adsorbents based on supported PEI, specifically branched and linear, low molecular weight PEI. Silica mesocellular foam, MCF, serves as the support material for impregnation of the amine polymers. In general, branched polymers are found to yield more effective adsorbents materials. Overall, the results of this work show that linear PAA, cross-linked PAAEPI, and branched PAADVB are promising candidates for solid adsorbents with high capacity for CO2.
|
1127 |
A study of plasma source ion implantation.Thomas, Kim. January 1993 (has links)
The work described in this thesis is an analysis of the Plasma Source Ion Implantation
(PSII) process. A metal target is placed within a plasma, and pulsed to a high negative
potential (10 - 50 kV). The electrons in the plasma close to the target are then repelled
very rapidly, leaving an area of uniform positive charge. This causes an electric field to
be set up between the plasma and the metal target. The ions close to the target are then
accelerated towards the target by the electric field. The ions reach the target at high
velocities, and implant deeply into the metal (-5 x 10-8 m), and form nitrides, which pin
dislocations within the metal's atomic structure. The strength of the metal is therefore
increased, and other properties such as the corrosion resistance of the metal are also
improved. Metals that have undergone the PSII process have widely diverse
applications. For example, in the motor industry, ion implanted metal punches last
much longer than nitrided punches, while in the medical industry ion implanted metals
are used for artificial limbs.
A combination of a number of different analytic, numerical and simulation models are
used to describe the PSII process, including the plasma behaviour and final nitrogen
implantation profile in the metal target after the application of the voltage pulse. In all
cases, a specific attempt has been made to realistically describe as closely as possible,
the actual experimental arrangement at the University of Natal. For example: a
waveform with a fast rise time, short plateau and exponential decay was used; the
nitrogen plasma was more realistically described by a two species fluid to account for
the measured N+, N; mix; and finally, the actual atomic composition for 304 stainless
steel was used in the TAMIX particle simulation.
This work thus models the whole PSII process, and could form the basis of future
studies for the optimisation of the process. / Thesis (M.Sc.)-University of Natal, 1993.
|
1128 |
Kenetics of hydrogen and carbon monoxide absorption by stagnant molten iron.Solar, Maurice Yvan. January 1971 (has links)
No description available.
|
1129 |
Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes : assessment of related hazard in the North Island : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Canterbury /Grunewald, Uwe. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2007. / Typescript (photocopy). "May 2007." Includes bibliographical references (p. 239-253). Also available via the World Wide Web.
|
1130 |
Environmental issues associated with landfill-generated methane /Kutlaca, Alex January 1992 (has links) (PDF)
Thesis (M. Env. St.)--University of Adelaide, Mawson Graduate Centre for Environmental Studies, 1993. / Includes bibliographical references (leaves 142-161).
|
Page generated in 0.0318 seconds