• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gata6 Haploinsufficiency Leads to Aortic Valve, Conduction System and Limbs Defects

Gharibeh, Lara 03 May 2018 (has links)
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Congenital heart disease (CHD) is a risk factor for premature cardiovascular complications. Great advances have occurred in the past years leading to the identification of several genes essential for proper cardiac formation such as GATA4/5/6 mutated in some individuals with CHD. GATA6 is a zinc finger transcription factor whose presence is crucial for early embryonic development. GATA6 is expressed in many cell types of the heart including myocardial, endocardial, neural crest, and vascular smooth muscle. In human, mutations in GATA6 result in variable cardiac phenotypes. The objective of this thesis was to determine the roles that GATA6 play in the different cell types of the heart and to elucidate the molecular basis of the cardiac defects associated with Gata6 haploinsufficiency. For this, a combination of cell and molecular techniques were used in vitro and in vivo. First, we show that Gata6 heterozygozity leads to RL-type bicuspid aortic valve (BAV)- the most common CHD affecting 2% of the population. GATA6-dependent BAV is the result of disruption of valve remodeling and extracellular matrix composition in Gata6 haploinsufficient mice. Cell-specific inactivation of one Gata6 allele from Isl-1 positive cells, but not from endothelial or neural crest cells, recapitulates the phenotype of Gata6 heterozygous mice revealing an essential role for GATA6 in secondary heart field myocytes during valvulogenesis. We further uncovered a role for GATA6 as an important regulator of the cardiac conduction system and revealed that GATA6 expression regulates the activity of the cardiac pacemaker. GATA6 exerts its role via regulation of the cross-talk among the different cell types of the SAN. Lastly, some CHDs are characterized by abnormalities of both the limbs and the heart such as the Holt Oram syndrome (caused by mutation in TBX5 transcription factor). The molecular basis for limb-heart defects remain poorly understood. In the course of this work, we discovered that Gata6 haploinsufficiency resulted in a partially penetrant polysyndactyly (extra digits fused together) phenotype. Together, the data provide novel molecular and cellular insight into GATA6 role in normal and pathologic heat development. Our results also suggest that GATA6 should be added to the list of genes whose mutations are potentially associated with heart and limb abnormalities. Better knowledge of the molecular basis of CHD is a prerequisite for the development of diagnostic and therapeutic strategies to improve care of individuals with congenital heart disease.
2

Mechanisms of nitrogen catabolite repression-sensitive gene regulation by the GATA transcription factors in Saccharomyces cerevisiae / Etude des mécanismes par lesquels les facteurs GATA régulent l'expression des gènes soumis à la répression catabolique azotée chez Saccharomyces cerevisiae

Ronsmans, Aria 19 December 2014 (has links)
The process of specific gene transcription by RNA polymerase II (Pol II) is initiated by the<p>binding of specific transcription factors to DNA. A global understanding of the mechanisms of gene<p>transcriptional regulation of Saccharomyces cerevisiae goes through the description of the targets and<p>the behavior of those transcription factors.<p>The GATA factors are specific transcription factors intervening in the regulation of Nitrogen<p>Catabolite Repression (NCR)-sensitive genes, a mechanism encompassing the transcriptional<p>regulations leading to the preferential use of good nitrogen sources of the growth medium of yeast in<p>the presence of less good nitrogen sources. Those 4 GATA factors involved in NCR comprise 2<p>activators (Gat1 and Gln3) and 2 repressors (Gzf3 and Dal80).<p>Generally speaking, the promoters of genes have always been described like the main place for<p>the integration of the transcription regulation signals relayed by the general and specific transcription<p>factors and the chromatin remodeling factors. Furthermore, the GATA factors have been described as<p>integrating the external signals of nitrogen availability thanks to their specific DNA binding to<p>consensus GATA sequences in the promoter of NCR-sensitive genes. The results presented here<p>introduce many nuances to the model, notably implying new proteins but also new regions in the<p>regulation process of the NCR-sensitive gene regulation. Indeed, the first goal of this work is to<p>discover and understand the mechanisms of NCR-sensitive gene regulation that will explain the<p>variations in their expression levels in the presence of various nitrogen sources and their dependency<p>towards the GATA factors.<p>Strikingly, it appeared that GATA factor positioning was not limited to the promoter, but<p>occurred also in the transcribed region. It seems that the transcription factors may have been driven<p>by the general transcription machinery (Pol II). The binding of a chromatin remodeling complex, RSC,<p>has also been demonstrated in the coding region of NCR-sensitive genes. Moreover, the binding of the<p>histone acetyltransferase complex, SAGA, recruited by the GATA activators, was highlighted along<p>NCR-sensitive genes. The SAGA complex was also implied in their transcriptional regulation.<p>Finally, a ChIP-sequencing experiment revealed an unsuspected number and diversification of<p>targets of the GATA factors in yeast, which were not limited to NCR-sensitive genes.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0453 seconds