1 |
Škála pro měření generativity - tvorba a ověření psychometrických charakteristik / Scale for measuring generativity- construction and verification of psychometric propertiesFaberová, Karolína January 2020 (has links)
The aim of this thesis is to construct a generativity scale and verify its psychometric properties within the Czech environment. We focus on both the theoretical foundations of generativity as well as the tools of its measurement. While these measures already exist, they do not sufficiently correspond with the context of the Czech environment. The constructed scale focuses on 7 areas of generativity and is based on some already existing tools, namely the LGS and GBC. Furthermore, using a content analysis of 150 interviews of participants between the ages of 50 and 60 years and considering the already existing tools, we created a 31-item scale which we further reduced to 24 items in the traditional item analysis. The overall achieved Cronbach's α value of 0.803 with a 95% confidence interval (0.766-0.835) is satisfactory. We conclude that the thesis has fulfilled the requirements of a pilot study and provides opportunities for subsequent research.
|
2 |
Per-Antenna Constant Envelope Precoding for Large Multi-User MIMO SystemsKhan Mohammed, Saif, Larsson, Erik G. January 2013 (has links)
We consider the multi-user MIMO broadcast channel with M single-antenna users and N transmit antennas under the constraint that each antenna emits signals having constant envelope (CE). The motivation for this is that CE signals facilitate the use of power-efficient RF power amplifiers. Analytical and numerical results show that, under certain mild conditions on the channel gains, for a fixed M, an array gain is achievable even under the stringent per-antenna CE constraint. Essentially, for a fixed M, at sufficiently large N the total transmitted power can be reduced with increasing N while maintaining a fixed information rate to each user. Simulations for the i.i.d. Rayleigh fading channel show that the total transmit power can be reduced linearly with increasing N (i.e., an O(N) array gain). We also propose a precoding scheme which finds near-optimal CE signals to be transmitted, and has O(MN) complexity. Also, in terms of the total transmit power required to achieve a fixed desired information sum-rate, despite the stringent per-antenna CE constraint, the proposed CE precoding scheme performs close to the sum-capacity achieving scheme for an average-only total transmit power constrained channel. / <p>Funding Agencies|Swedish Foundation for Strategic Research (SSF)||ELLIIT||Knut and Alice Wallenberg Foundation||Center for Industrial Information Technology at ISY, Linkoping University (CENIIT)||</p>
|
3 |
Constellation Constrained Capacity For Two-User Broadcast ChannelsDeshpande, Naveen 01 1900 (has links) (PDF)
A Broadcast Channel is a communication path between a single source and two or more receivers or users. The source intends to communicate independent information to the users. A particular case of interest is the Gaussian Broadcast Channel (GBC) where the noise at each user is additive white Gaussian noise (AWGN). The capacity region of GBC is well known and the input to the channel is distributed as Gaussian. The capacity region of another special case of GBC namely Fading Broadcast Channel (FBC)was given in [Li and Goldsmith, 2001]and was shown that superposition of Gaussian codes is optimal for the FBC (treated as a vector degraded Broadcast Channel).
The capacity region obtained when the input to the channel is distributed uniformly over a finite alphabet(Constellation)is termed as Constellation Constrained(CC) capacity region [Biglieri 2005].
In this thesis the CC capacity region for two-user GBC and the FBC are obtained. In case of GBC the idea of superposition coding with input from finite alphabet and CC capacity was explored in [Hupert and Bossert, 2007]but with some limitations. When the participating individual signal sets are nearly equal i.e., given total average power constraint P the rate reward α (also the power sharing parameter) is approximately equal to 0.5, we show via simulation that with rotation of one of the signal sets by an appropriate angle the CC capacity region is maximally enlarged. We analytically derive the expression for optimal angle of rotation. In case of FBC a heuristic power allocation procedure called finite-constellation power allocation procedure is provided through which it is shown (via simulation)that the ergodic CC capacity region thus obtained completely subsumes the ergodic CC capacity region obtained by allocating power using the procedure given in[Li and Goldsmith, 2001].It is shown through simulations that rotating one of the signal sets by an optimal angle (obtained by trial and error method)for a given α maximally enlarges the ergodic CC capacity region when finite-constellation power allocation is used. An expression for determining the optimal angle of rotation for the given fading state, is obtained. And the effect of rotation is maximum around the region corresponding to α =0.5. For both GBC and FBC superposition coding is done at the transmitter and successive decoding is carried out at the receivers.
|
Page generated in 0.0186 seconds