• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 10
  • 10
  • 10
  • 10
  • 10
  • 7
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Crustal accretion and evolution at slow and ultra-slow spreading mid-ocean ridges

Hosford, Allegra January 2001 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2001. / Page 250 blank. / Includes bibliographical references. / Half of the ocean crust is formed at spreading centers with total opening rates less than 40 km/Myr. The objective of this Thesis is to investigate temporal variations in active ridge processes and crustal aging at slow-spreading centers by comparing axial crustal structure with that on conjugate flanks of the slow-spreading Mid-Atlantic Ridge (MAR) (full rate, 20 km/Myr) and the ultra-slow spreading Southwest Indian Ridge (SWIR) (full rate, 14 km/Myr). Seismic refraction data collected along the rift valley and flanking rift mountains of the OH-1 segment (35ʻN) at the MAR show that the entire crustal section is constructed within a zone that is less than 5 km wide. Shallow-level hydrothermal circulation within the axial valley is suggested by the rift mountain seismic profiles, which show that the upper crust is 20% thinner and 16% faster along strike than zero-age crust. These effects probably result from fissure sealing within the extrusive crust. Deeper crustal velocities remain relatively constant at the segment midpoint within the first 2 Myr, but are reduced near the segment offsets presumably by faulting and fracturing associated with uplift out of the rift valley. / (cont.) A temporal variation in axial melt supply is suggested by a 15% difference in along-strike crustal thickness between the rift valley and rift mountains, with relatively less melt supplied today than 2 Ma. Crustal accretion at the SWIR appears to occur in a similar manner as at the MAR, although gravity and seismic data indicate that the average crustal thickness is 2-4 km less at theultra-slow spreading SWIR. A 25 Myr record on both flanks of the ridge shows that seafloor spreading has been highly asymmetric through time, with 35% faster crustal accretion on the Antarctic (south) plate. A small-offset non-transform discontinuity between two ridge segments is just as stable as two neighboring transform discontinuities, although a single mantle Bouguer gravity anomaly centered over the non-transform offset indicates that this boundary does not significantly perturb underlying mantle flow. Off-axis magnetic anomalies are recorded with high fidelity despite the very low spreading rates and the absence of a basaltic upper crust in one area. The lower crust may be the dominant off-axis carrier of the magnetic signal, contrary to traditionalmodels of crustal magnetic structure. Morphological and gravity data show evidence of asymmetric crustal accretion across the SWIR ridge axis, with slightly warmer mantletemperatures beneath the slower-spreading African (north) plate. / by Allegra Hosford. / Ph.D.
12

Surface and bottom boundary layer dynamics on a shallow submarine bank : southern flank of Georges Bank

Werner, Sandra R. (Sandra Regina) January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references. / The thesis investigates the circulation at a 76-m deep study site on the southern flank of Georges Bank, a shallow submarine bank located between the deeper Gulf of Maine and the continental slope. Emphasis is placed on the vertical structure of the bottom boundary layer driven by the semidiurnal tides and the flow field's response to wind forcing. The observational analysis presented here is based on a combination of moored array and bottom tripod-mounted current, temperature, conductivity, and meteorological data taken between February and August 1995. Results from the bottom boundary layer analysis are compared to numerical model predictions for tidal flow over rough bottom topography. The flow response to wind forcing is examined and brought into context with the existing understanding of the wind-induced circulation in the Georges Bank region. Particular attention is given to the vertical distribution of the wind-driven currents, whose variation with background stratification is discussed and compared to observations from open ocean studies. / by Sandra Regina Warner. / Ph.D.
13

Analysis of acoustic propagation in the region of the New England continental shelfbreak / Acoustic propagation in the region of the New England continental shelfbreak

Sperry, Brian J January 1999 (has links)
Thesis (Ph.D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (p. 180-184). / During July and August of 1996, a large acoustics/physical oceanography experiment was fielded in the Mid-Atlantic Bight, south of Nantucket Island, MA. Known as the Shelfbreak Front PRIMER Experiment, the study combined acoustic data from a moored array of sources and receivers with very high resolution physical oceanographic measurements. This thesis addresses two of the primary goals of the experiment, explaining the properties of acoustic propagation in the region, and tomographic inversion of the acoustic data. In addition, this thesis develops a new method for predicting acoustic coherence in such regions. Receptions from two 400 Hz tomography sources, transmitting from the continental slope onto the shelf, are analyzed. This data, along with forward propagation modeling utilizing SeaSoar thermohaline measurements, reveal that both the shelfbreak front and tidally-generated soliton packets produce stronger coupling between the acoustic waveguide modes than expected. Arrival time wander and signal spread show variability attributable to the presence of a shelf water meander, changes in frontal configuration, and variability in the soliton field. The highly-coupled nature of the acoustic mode propagation prevents detailed tomographic inversion. Instead, methods based on only the wander of the mode arrivals are used to estimate path-averaged temperatures and internal tide "strength". The modal phase structure function is introduced as a useful proxy for acoustic coherence, and is related via an integral transform to the environmental sound speed correlation function. Advantages of the method are its flexibility and division of the problem into independent contributions, such as from the water column and seabed. / by Brian J. Sperry. / Ph.D.
14

Free-surface turbulence and air-water gas exchange

McKenna, Sean Patrick January 2000 (has links)
Thesis (Ph.D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2000. / Includes bibliographical references (p. 299-312). / by Sean Patrick McKenna. / Ph.D.

Page generated in 0.0191 seconds