1 |
Simulated Automobile and Rotary-Wing Aircraft Impacts: Dynamic Neck Response after Surgical Treatment for Cervical SpondylosisWhite, Nicholas Alan 02 January 2014 (has links)
Degeneration of the cervical spine is part of the normal aging process, usually occurring without clinical symptoms. Symptomatic degeneration most often occurs in the lower cervical spine, presenting as axial neck pain, radiculopathy, myelopathy, or any combination of the three. When conservative treatment does not adequately manage these symptoms, surgical intervention may be required. The longstanding surgical treatment for cervical degeneration is arthrodesis achieved through anterior cervical discectomy and fusion (ACDF). A relatively newer treatment is arthroplasty with a cervical total disc replacement (CTDR), a motion-sparing procedure designed to maintain adjacent-level loading. While literature exists comparing the effects of cervical arthrodesis and cervical arthroplasty on neck kinematics and loading, the vast majority of these studies applied only quasi-static, non-injurious loading conditions. This dissertation research used a state-of-the-art, full body human finite element (FE) model to investigate the effects of these surgical procedures on neck response during simulated dynamic impacts.
A method was developed to measure cross-sectional forces and moments at each level of the neck in the FE model. Neck loading was captured during three automobile impact simulations: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment, and an unbelted side impact. The measured neck forces and moments were compared to existing injury threshold values and used to calculate injury criteria values. Four additional simulations of the frontal impact with the belted driver were conducted with neck modifications representative of either a fusion or arthroplasty of C5-6. While cross-sectional loading above and below the implants did not vary appreciably, key differences were noted in both the interbody and facet response. However, no neck injury thresholds were exceeded in any of the simulations.
With cervical radiculopathy diagnosed in 24,742 active-duty U.S. military personnel between 2000 and 2009, interest in cervical arthroplasty as treatment for symptomatic cervical degeneration in this population has increased. This motion-sparing procedure has the potential to expedite post-operative recovery time, allowing for these highly trained individuals to return to active-duty sooner than with a fusion. Due to the physically demanding nature of the military environment, it is important to ensure that this surgical procedure does not increase the likelihood of a neck injury.
An FE simulation environment was developed to investigate aviator head and neck response during a survivable, rotary-wing aircraft impact with the ground using both an anthropomorphic test device (ATD) and a human body model. The head and neck response of the ATD FE simulation was successfully validated against the results of a previously conducted experimental sled test. A more biofidelic head and neck response was produced with the human body model, including realistic changes in neck curvature. Additional simulations were conducted with the human body model to investigate the neck response after cervical arthroplasty of C5-6. While the adjacent-level, cross-sectional loading for the C5-6 segment was not appreciably altered by the CTDRs, the interbody range-of-motion was increased; subsequently altering both the interbody and cervical facet loading. Again, no neck injury thresholds were exceeded in these simulations. Overall, cervical arthroplasty did not appear to have a deleterious effect on the dynamic neck response during a simulated rotary-wing aircraft impact. / Ph. D.
|
2 |
Studying American Football with Finite Element Analysis and Video Analysis / Undersökning av Amerikansk Fotboll med Finit Element Analys och Video AnalysSliwinski, Daniel January 2021 (has links)
Head injuries in American football is a serious issue regarding player health which is highly affected by velocity and its direction. Impact location can affect the severity of the head injury in both helmet-to-helmet impacts and helmet-to-ground impacts hence the understanding of concussive outcome from velocities and impact locations must be improved. In this thesis a video analysis resulted in simulation of five helmet-to-helmet impacts and two helmet-to-ground impacts, where velocity in each impact also was approximated with the method of least squares to avoid extreme values. The average velocity in helmet-to-helmet impacts was 5.1728 m/s for tackler player and 4.4766 m/s for tackled player and in helmet-to-ground impacts it instead was 6.1975 m/s. With the regression method an average velocity of 4.3982 m/s for tackler player and 5.3854 m/s for the tackled player in helmet-to-helmet impacts and 5.874 m/s in helmet-to-ground impacts. The simulations were performed with LS-DYNA and examined in LS-PrePost where head kinematics and the strain of brain tissue or more specific the maximum principal strain (MPS) was of interest. Further the MPS was scaled to its 95th percentile which determined the concussive likelihood for each impact scenario. The highest concussive outcome for an impact scenario was 100% and the lowest was 15%. The head kinematics of interest was linear acceleration, angular acceleration and angular velocity which in high risk for concussive outcome wasn't dominated by a single head kinematic. Impacts locations in helmet-to-helmet impacts didn't show any connection between impact location and high concussive risk. In helmet-to-ground impacts a connection between impact location at the back of the head and high concussive risk was observed. / Huvudskador inom Amerikansk fotboll är ett återkommande problem när det gäller spelarnas hälsa. Hastigheten och vart tacklingen träffar är starkt kopplat till hur allvarlig en huvudskada kan bli i både hjälm-mot-hjälm tacklingarn och hjälm-mot-mark. För att förhindra huvudskador måste förståelsen om kinematiken och vart tacklingen träffar förbättras. I detta examensarbete gjordes en videoanalys vilket resulterade i fem hjälm-mot-hjälm simuleringar och två hjälm-mot-mark. Hastigheten approximerades också genom att använda uppskattnings metoden minsta kvadratmetoden. Medel-värdet av hastigheterna från videoanalysen blev 5.1728 m/s för spelaren som utförde tacklingen och 4.4766 m/s för spelaren som blev tacklad i hjälm-mot-hjälm tacklingar. I hjälm-mot-mark blev det istället ett medelvärde på 6.1975 m/s. Med uppskattnings metoden blev hastigheterna istället 4.3982 m/s för den tacklande spelaren och 5.3854 m/s för den tacklade spelaren i hjälm-mot-hjälm tacklingar. För hjälm-mot-mark blev medelvärdet av hastigheten 5.874 m/s med uppskattnings metoden. Simuleringarna av tacklings fallen gjordes med LS-DYNA och analyserades i LS-PrePost där huvudets kinematik och töjningen av hjärnvävnad är av intresse. Töjningen mättes av maximum principal strain (MPS) och den 95:e percentilen av MPS för att bestämma risken för hjärnskakning där den största risken för hjärnskakning var 100% och den minsta 15%. För huvudets kinematik var det linjär acceleration, vinkelacceleration och vinkelhastighet som var av intresse. Det fanns ingen koppling mellan endast en av kinematikerna och hög risk för hjärnskakning. Gällande vart tacklingen träffar fanns det ingen koppling mellan vart den träffar och hög risk för hjärnskakning i hjälm-mot-hjälm tacklingar. För hjälm-mot-mark tacklingar fanns det ett samband mellan att bakre delen av huvudet träffar marken och hög risk för hjärnskakning.
|
Page generated in 0.0144 seconds