1 |
Structural studies of terpenoid biosynthesis and bacterial cell divisionYang, Dong 02 June 2009 (has links)
The objective of this work is to investigate the structures of two nucleotide
binding proteins: mevalonate kinase (MVK) and FtsZ.
MVK is the key enzyme involved in terpenoid biosynthesis. In this study, we
solved the crystal structures of the M. jannaschii MVK apoprotein, as well as the protein
in complex with ligands. Its fold was analyzed and firmly established within the GHMP
kinase family, in which homoserine kinase (HSK), phosphomevalonate kinase and
galactokinase also belong. Structural analysis in combination with enzyme kinetics
studies revealed the mechanism of this enzyme upon substrate binding, catalysis and
inhibition. In particular, the phosphate-binding loop was found to be critically involved
in the binding of nucleotides and terpenoids, via the interaction with a di-phosphate
moiety from the ligand. An enzymatic reaction mechanism was constructed based on our
structural data and it is consistent with kinetics studies from the literature. In this
mechanism, the invariant residue Asp 155 functions as a general base that increases the
nucleophilicity of the phosphoryl acceptor. Finally, a virtual screening study has been performed to explore the ligand binding potential of MVK. Compounds predicted to
bind MVK were tested and analyzed.
FtsZ is a prokaryotic homologue of tubulin that forms the apparatus for bacterial
cell division. The structure of a crystal filament of the M. tuberculosis FtsZ complexed
with GDP was described in this study. It shows an anti-parallel, left-handed double
helical architecture. Compared with the straight crystal filament revealed earlier by other
groups, the catalytic T7 loop in our structure is found to be outside the nucleotide
binding site, indicating the GTPase is inactive. Furthermore, the buried surface area in
our crystal filament is less, probably suggesting the helical FtsZ filament is less stable.
We therefore proposed that the hydrolysis of GTP and the releasing of the γ-phosphate
group will trigger the rearrangement of the FtsZ fibler, characterized by the exclusion of
the T7 loop, which might lead to a less stable helical filament and would be the first step
for the disassembly of FtsZ polymer.
|
2 |
Structural analysis of the potential therapeutic targets from specific genes in Methicillin-resistant Staphylococcus aureus (MRSA)Yan, Xuan January 2011 (has links)
The thesis describes over-expression, purification and crystallization of three proteins from Staphylococcus aureus (S. aureus). S. aureus is an important human pathogen and methicillin-resistant S. aureus (MRSA) is a serious problem in hospitals nowadays. The crystal structure of 3-Methyladenine DNA glycosylase I (TAG) was determined by single-wavelength anomalous diffraction (SAD) method. TAG is responsible for DNA repair and is an essential gene for both MRSA and methicilin-susceptible S. aureus (MSSA). The structure was also determined in complex with 3-methyladenine (3-MeA) and was solved using molecular replacement (MR) method. An assay was carried out and the molecular basis of discrimination between 3-MeA and adenosine was determined. The native crystal structure of fructose 1-phosphate kinase (PFK) from S. aureus was determined to 2.30 Å and solved using molecular replacement method. PFK is an essential enzyme involved in the central metabolism of MRSA. Despite extensive efforts no co-complex was determined, although crystals were obtained they diffracted poorly. An assay which can be used to test for inhibitors has been developed. Mevalonate Kinase (MK) is another essential enzyme in MRSA and is a key drug target in the mevalonate pathway. Native data diffracting to 2.2 Å was collected. The structure was solved using multiple isomorphorus replacement (MIR) method. A citrate molecule was bound at the MK active site, arising from the crystallization condition. The citrate molecule indicates how substrate might bind. The protein was kinetically characterized. A thermodynamic analysis using fluorescence-based method was carried out on each protein to investigate binding interactions of potential fragments and thus a drug design starting point.
|
Page generated in 0.0154 seconds