1 |
Investigation on Negative Bias Temperature Instability and Physical Mechanism of PD-SOI p-MOSFETsChung, Wan-Lin 26 July 2011 (has links)
This work investigates the influence of gate-induced floating body effect (GIFBE) on negative bias temperature instability (NBTI) in partial depleted silicon-on-insulator p-type metal-oxide-semiconductor field effect transistors (PD-SOI p-MOSFETs). The results indicate GIFBE causes a reduction in the electrical oxide field, leading to an underestimate of NBTI degradation. This can be attributed to the electrons tunneling from the process-induced partial n+ poly gate, and at higher voltages is dominated by the proposed anode electron injection (AEI) model.
Moreover, when introducing the mechanical strain to PD-SOI p-MOSFETs result in decreasing the NBTI degradation for BC and FB devices, because increase of effective mass of hole and barrier height to decrease the probability of reaction of NBTI. The degradation of NBTI on FB device less than BC device because of strain-induced band gap narrowing to substrate and p+ poly gate, resulting in the rising of rate of impact ionization in AEI model to increase the accumulation of electrons on body.
After that, giving the drain voltage in NBTI stress, the threshold voltage, Vth, shift decreases as drain voltage (VD) rising within the stress condition of VD= -1V. This phenomenon can be attributed to the shorter effective reaction time of hole and Si-H bonds after applying drain voltage during NBTI stress. However, beyond the condition at VD= -1V, the Vth shift rises as the drain voltage increasing. This behavior is resulted from the self-heating effect induced by the higher stress VD to increase the degradation of NBTI.
|
Page generated in 0.017 seconds