• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 61
  • 10
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 372
  • 165
  • 127
  • 124
  • 108
  • 101
  • 101
  • 95
  • 85
  • 80
  • 79
  • 72
  • 66
  • 66
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nondestructive testing of concrete box girder bridges using thermal imaging

Dupuis, Kenneth J., January 2008 (has links) (PDF)
Thesis (Master of Civil Engineering)--Washington State University, May 2008. / Includes bibliographical references (p. 93).
22

Behavior of adjacent precast prestressed concrete box girder bridges

Hanna, Kromel E. January 2008 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2008. / Title from title screen (site viewed Apr. 9, 2009). PDF text: xi, 152 p. : ill. (chiefly col.) ; 6 Mb. UMI publication number: AAT 3341867. Includes bibliographical references. Also available in microfilm and microfiche formats.
23

Computation of Live Load Deflections for a Composite, Steel-Girder Bridge

Jefferson, Thomas Seth 01 December 2016 (has links)
Current specifications of the American Association of State Highway and Transportation Officials (AASHTO) include restrictions on the live load deflections of highway bridge girders. Conventional practice, which utilizes hand calculations to estimate girder deflections, assumes that all girders of a highway bridge deflect to the same degree. In addition, the conventional equations do not account for AASHTO specifications requiring the evaluation of extreme force effects. As such, the accuracy of the conventional approach for calculating girder deflections is under question. The purpose of this study is, therefore, to check the accuracy of the conventional approach by testing the two aforementioned assumptions made by the equations. A composite steel girder bridge example has been selected from Design of Highway Bridges: An LRFD Approach, Third Edition by Richard M. Barker and Jay A. Puckett. The design example specifies the dimensions for all structural elements, as well as the girder type and spacing. The design example does not include specifications for the bridge bearings, and so bearing pads are designed according to the Illinois Department of Transportation (IDOT) Bridge Manual (2012). This study consists of two steps. First, a hand-calculated live load deflection for the bridge example is derived from the conventional approach (assuming all girders deflect to the same degree and without consideration for extreme force effects). Next, the finite element analysis software, NISA/Display IV, is utilized to model and analyze the real-world deflections of the bridge model. Three live loading conditions are applied to the finite element model, in accordance with AASHTO specifications. For first live load condition, the live loads are positioned at the center of each traffic lane. The second and third conditions apply extreme force effects to an interior girder and exterior girder, respectively. The results for each finite element analysis are then compared with the conventional, hand-calculated deflection. The results of this study contradict the two aforementioned assumptions made by the conventional equations for calculating girder deflections. Firstly, this study demonstrates that interior girders experience a significantly greater live load deflection than interior girders. More importantly, the results indicate that the conventional equations underestimate the live load deflection of an interior girder subjected to extreme force effects. None of the results, however, suggest that the bridge example is at risk of excessive deformation, and so the extent to which these drawbacks present a concern can be left to the discretion of the engineer.
24

Rational load rating of deck-girder bridges with girder end shear cracks in reverse orientation

Bernica, Andrew January 1900 (has links)
Master of Science / Civil Engineering / Hayder Rasheed / Reverse diagonal shear cracking at the supports of many reinforced concrete girders is a phenomenon affecting a number of KDOT’s low-volume bridges built in the early-to-mid 1900’s. This phenomenon is not addressed in the AASHTO Bridge Design Manual (2002) or ACI specifications. This study investigates the causes of this cracking and creates BRIDGE (Bridge Rating of Inclined Damage at Girder Ends), an Excel-based software to determine the load rating of a user specified bridge exhibiting reverse diagonal shear cracking at the girder supports. A user-interface is created which allows a user to create a grillage model of an existing bridge and to place various rating trucks on the bridge. Equivalent flexibility analysis is used to distribute the truck live loads from within the deck panels to the surrounding girders and diaphragms. Stiffness matrices are utilized to find the nodal displacements then the reactions at the girder supports caused by the truck live loads and bridge dead load. These reactions are checked against RISA software models to test the accuracy of the stiffness matrix application. ABAQUS FE models and Mohr’s circle stress distribution is used to find the driving and clamping forces on the crack. These forces are caused by resolving the dead and live load reactions and the friction force generated between the concrete girder and the rusty steel bearing pad along the shear crack orientation. These clamping and driving forces are used, along with the simplified modified compression field theory to determine the shear capacity of each girder at the reverse cracks. A modified version of Equation 6B.4.1 from the Manual for Bridge Evaluation (2011) is used to find the operating and inventory rating factors for the bridge.
25

Design of a multi-span plate girder highway bridge using LRFD bridge specifications

Easter, Scott F. 27 April 2010 (has links)
<p>The design of the superstructure of a multi-span plate girder bridge was performed using the new AASHTOILRFD bridge specifications. The bridge was composed of three continuous spans of 100'-120'-100' designed to carry interstate traffic over a relatively wide river. The roadway width was 44'-0" and the girder spacing was 8'- 0". The design was composite in both the positive and negative moment regions. The report includes a review of the loading criteria for the new specifications which are relevant to the project. Comparisons are made between the current 1992 AASHTO requirements and the new AASHTOILRFD requirements. The project includes a detailed analysis of the loads and the moment and shear envelopes. Finally, the design, in accordance with the new specifications, is presented along with drawings and conclusions.</p> / Master of Engineering
26

Fire Hazard Assessment for Highway Bridges with Thermal Mechanical Modeling

Woodworth, Michael Allen 02 August 2013 (has links)
Bridges are critical pieces of infrastructure important to public safety and welfare. Fires have the potential to damage bridges and have been responsible for taking many bridges out of service. The hazard fire poses to bridges is a little studied risk unlike more common threats such as impact, scour and earthquake. Information on the rate of occurrence of bridge fires and the mechanisms of structural response of bridges subjected to fire are both vital to policy makers seeking to address the hazard rationally. The investigation presented developed frequency statistics of bridge fire incidents from several sources of vehicle accident and fire statistics. To further investigate the fire hazard a computational model integrating the simulation of large fires and the simulation of bridge superstructure mechanical response was created. The simulation was used to perform a parametric study of fire size and location to investigate the relationship between these parameters and damage tot bridge super-""structure. The statistics investigation resulted in an observed rate of fires due to vehicle accidents of approximately 175 per year. Approximately one of these per year was the result of a tanker truck carrying a flammable liquid leading to extensive superstructure damage. The simulation showed that a tanker fire resulted in permanent damage to the bridge by several measures where as the affects of a bus fire were minimal. The simulations also demonstrated the mechanisms of bridge response; the importance of girder temperature in that response; and the differences in the response to a tanker fire that can lead to collapse. / Ph. D.
27

Response of Cyclically Loaded Extended End-Plate Moment Connections When Used With Welded Built-Up Sections

Blumenbaum, Stephen E. 12 August 2004 (has links)
An experimental investigation was conducted to study the behavior of extended end-plate moment connections subjected to cyclic loading. Eleven specimens were tested, representing typical connection configurations used in the metal building manufacturing industry. Four of the beams were shallow (30 in. or less), and seven were deep (60 in. or more). Two of the beams had compact webs, two had non-compact webs, and seven had slender webs. All specimens were designed according to the "thick plate" procedure contained in AISC Design Guide 16, Flush and Extended Multiple-Row Moment End-Plate Connections. A displacement-controlled history was used to load the specimens. Experimental maximum moments were compared to analytical predictions of beam and connection strength. Also, each moment versus rotation relationship was analyzed for compliance with the requirements of Ordinary, Intermediate, and Special Moment Frames, as defined by AISC in the Seismic Provisions for Structural Steel Buildings. The experimental results demonstrated that the thick plate procedure in Design Guide 16 is an accurate model for predicting the strength of the connection elements, and the procedure is recommended for designing connections subject to cyclic (seismic) loads. The connection design moment should be based on the expected plastic strength of the beam, regardless of the equations governing nominal beam strength. / Master of Science
28

Live-Load Test and Computer Modeling of a Pre-Cast Concrete Deck, Steel Girder Bridge, and a Cast-in-Place Concrete Box Girder Bridge

Pockels, Leonardo A. 01 December 2009 (has links)
The scheduled replacement of the 8th North Bridge, in Salt Lake City, UT, presented a unique opportunity to test a pre-cast concrete deck, steel girder bridge. A live-load test was performed under the directions of Bridge Diagnostic Inc (BDI) and Utah State University. Six different load paths were chosen to be tested. The recorded data was used to calibrate a finite-element model of this superstructure, which was created using solid, shell, and frame elements. A comparison between the measured and finite-element response was performed and it was determined that the finite-element model replicated the measured results within 3.5% of the actual values. This model was later used to obtain theoretical live-load distribution factors, which were compared with the AASHTO LRFD Specifications estimations. The analysis was performed for the actual condition of the bridge and the original case of the bridge, which included sidewalks on both sides. The comparison showed that the code over predicted the behavior of the actual structure by 10%. For the original case, the code's estimation differed by as much as 45% of the theoretical values. Another opportunity was presented to test the behavior of a cast-in-place concrete box girder bridge in Joaquin County, CA. The Walnut Grove Bridge was tested by BDI at the request of Utah State University. The test was performed with six different load paths and the recorded data was used to calibrate a finite-element model of the structure. The bridge was modeled using shell elements and the supports were modeled using solid elements. The model was shown to replicate the actual behavior of the bridge to within 3% of the measured values. The calibrated model was then used to calculate the theoretical live-load distribution factors, which allowed a comparison of the results with the AASHTOO LRFD Specifications equations. This analysis was performed for the real conditions of the bridge and a second case where intermediate diaphragms were not included. It was determined that the code's equations estimated the behavior of the interior girder more accurately for the second model (within 10%) than the real model of the bridge (within 20%).
29

Behavior of the cast-in-place splice regions of spliced I-girder bridges

Williams, Christopher Scott 17 September 2015 (has links)
Spliced girder technology continues to attract attention due to its versatility over traditional prestressed concrete highway bridge construction. Relatively limited data is available in the literature, however, for large-scale tests of post-tensioned I-girders, and few studies have examined the behavior of the cast-in-place (CIP) splice regions of post-tensioned spliced girder bridges. In addition to limited knowledge on CIP splice region behavior, a wide variety of splice region details (e.g., splice region length, mild reinforcement details, cross-sectional geometry, etc.) continue to be used in the field. In response to these issues, the research program described in this dissertation was developed to (i) study the strength and serviceability behavior of the CIP splice regions of spliced I-girders, (ii) identify design and detailing practices that have been successfully implemented in CIP splice regions, and (iii) develop design recommendations based on the structural performance of spliced I-girder test specimens. To accomplish these tasks, an industry survey was first conducted to identify the best practices that have been implemented for the splice regions of existing bridges. Splice region details were then selected to be included in large-scale post-tensioned spliced I-girder test specimens. Two tests were conducted to study splice region behavior and evaluate the performance of the chosen details. The failure mechanisms of both test girders were characterized by a shear-compression failure of the web concrete with primary crushing occurring in the vicinity of the top post-tensioning duct. Most significantly, the girders acted essentially as monolithic members in shear at failure. Web crushing extended across much of the test span and was not localized within the splice regions. To supplement the spliced girder tests, a shear-friction experimental program was also conducted to gain a better understanding of the interface shear behavior between precast and CIP concrete surfaces at splice regions. The findings of the shear-friction study are summarized within this dissertation. Based on the results of the splice region research program, design recommendations were developed, including recommended CIP splice region details.
30

Predicting the behavior of horizontally curved I-girders during construction

Stith, Jason Clarence 09 November 2010 (has links)
The majority of a bridge designer’s time is spent ensuring strength and serviceability limit states are satisfied for the completed structure under various dead and live loads. Anecdotally, the profession has done an admirable job designing safe bridges, but engineering the construction process by which bridges get built plays a lesser role in the design offices. The result of this oversight is the complete collapse of a few large bridges as well as numerous other serviceability failures during construction. According to the available literature there have been only a few attempts to monitor a full-scale bridge in the field during the entire construction process. Another challenge for engineers is the lack of analysis tools available which predict the behavior of the bridge during the intermediate construction phases. During construction, partial bracing is present and the boundary conditions can vary significantly from the final bridge configuration. The challenge is magnified for complex bridge geometries such as curved bridges or bridges with skewed supports. To address some of the concerns facing engineers a three span curved steel I-girder bridge was monitored throughout the entire construction process. Field studies collected data on the girder lifting behavior, partially constructed behavior, and concrete deck placement behavior. Additional analytical studies followed using the field measurements to verify the finite element models. Finally, conclusions drawn from the physical and analytical testing were utilized to derive equations that predicted behavior, and analysis tools were developed to provide engineers with solutions to a wide range of construction related problems. This dissertation describes the development of two design tools, UT Lift and UT Bridge. UT Lift is a macro-enabled Excel spreadsheet that predicts the behavior of curved I-girders during lifting. The derivation of the equations necessary to accomplish these calculations and the implementation are described in this dissertation. UT Bridge is a PC-based, user-friendly, 3-D finite element program for I-girder bridges. The basic design philosophy of UT Bridge aims to allow an engineer to take the information readily available in a set of bridge drawings and easily input the necessary information into the program. A straight or curved I-girder bridge with any number of girders or spans can then be analyzed with a robust finite element analysis for either the erection sequence or the concrete deck placement. The development of UT Bridge as well as the necessary element formulations is provided in this dissertation. / text

Page generated in 0.0146 seconds