• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 11
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cytogenetika vybraných skupin paprskoploutvých ryb (Actinopterygii): Evolučně -ekologické aspekty spjaté s dynamikou repetitivních sekvencí a s výskytem polyploidie / Cytogenetics of selected groups of ray-finned fishes (Actinopterygii): Evolutionary-ecological questions associated with the dynamics of repetitive sequences and the occurrence of polyploidy

Sember, Alexandr January 2016 (has links)
Ray-finned fishes (Actinopterygii) exhibit the greatest biodiversity among vertebrates. The vast majority of extant actinopterygian fish species belong to clade Teleostei - a lineage whose significant evolutionary success might have resulted from a teleost specific whole- genome duplication (TSGD) that occurred at the onset of this group, subsequent to its divergence from the rest of actinopterygian lineages. Despite the growing body of sequenced fish genomes and analyses of their transcriptomes, the largest contribution to understanding fish genomes comes from analyses of DNA content and from cytogenetics. Genomes of ray-finned fishes and especially those of Teleostei exhibit vast diversity and rapid dynamics of repetitive DNA sequences whose variability is reflected in a wide range of fish genome sizes and in the dynamics behind karyotype differentiation. Therefore, ray-finned fishes offer a unique opportunity to study genome variability as a driving force underlying morphological and ecological diversification, evolution and adaptation. Particularly, the mapping of repetitive DNA sequences by means of fluorescence in situ hybridization (FISH) has proven to be a very useful and informative approach during the last two decades and contributed greatly to our understanding of the fish genome...

Page generated in 0.0392 seconds