• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 31
  • 26
  • 18
  • 8
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 146
  • 100
  • 37
  • 22
  • 22
  • 20
  • 17
  • 15
  • 14
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms Underlying Cardioprotective Effects of Glucagon like Peptide-1 in Ischemia-reperfusion Injury

Ban, Kiwon 04 August 2010 (has links)
Cardioprotective effects of glucagon-like peptide-1 (GLP-1), the GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4), and GLP-1(9-36), a cleavage product of GLP-1, were examined in ischemia-reperfusion (I/R) models of both isolated mouse hearts and cultured cardiac myocytes (CMs) using both wild-type (WT) and GLP-1R knockout (Glp1r-/-) mice. In WT hearts, GLP-1 and Ex-4 significantly improved left ventricular functional recovery vs. untreated controls following I/R, whether the drugs were administered prior to ischemia (pre-ischemia) or during reperfusion (post-ischemia). Surprisingly, the cardioprotective effects of pre- and post-ischemia treatments with GLP-1, but not Ex-4, remained evident in Glp1r-/- hearts. Although pre-ischemia infusion of GLP-1(9-36) induced lower functional recovery than untreated controls, post-ishemia infusion of GLP-1(9-36) augmented functional recovery and reduced infarct size to a similar extent to that of GLP-1 and Ex-4 in hearts from both WT and Glp1r-/- mice. Mass spectrometry was used to assay conversion of GLP-1 to GLP-1(9-36) in coronary effluents of isolated mouse hearts. Within 15 min of infusing GLP-1, significant amounts of GLP-1(9-36) were generated by the heart. By 30 min, only trace amounts of intact GLP-1 remained in coronary effluents indicating the heart rapidly converts GLP-1 to GLP-1(9-36). In CMs undergoing simulated I/R injury in vitro, both GLP-1(9-36) and Ex-4 significantly improved cell viability, LDH release and caspase-3 activation. These effects were significantly attenuated by co-treatments with LY294002, PD98059 and Ex(9-39), inhibitors of PI3K, ERK1/2, and GLP-1R respectively. The actions of Ex-4, but not GLP-1(9-36), were lost in CMs isolated from Glp1r-/- mice and only GLP-1(9-36), but not Ex-4, improved the survival of human aortic endothelial cells (HAEC) undergoing simulated I/R injury. Of note, both GLP-1 and GLP-1(9-36) treatments also demonstrated potent vasodilatory effects, as manifested by increased coronary flow rates in isolated hearts and increased diameters of pre-constricted mesenteric arteries isolated from both WT and Glp1r-/- mice. The cardioprotective effects on isolated hearts and vasodilatory effects on isolated mesenteric arteries, induced by GLP-1 was blunted by co-treatment with a dipeptidyl peptidase-4 (DPP-4) enzyme inhibitor known to block conversion of GLP-1 to GLP-1(9-36). Together, these data suggest that the beneficial effects of GLP-1 in I/R injury are mediated in part by GLP(9-36) and support the existence of a GLP-1(9-36) responsive, but Ex(9-39)-sensitive cardioprotective signaling pathway distinct from that associated with the classical GLP-1R.
2

The Role of the GLP-2 Receptor in Intestinal and Islet Adaptation to Changes in Nutrient Availability

Bahrami, Jasmine 16 March 2011 (has links)
GLP-2 is a potent intestinotrophic peptide that can increase mucosal growth, intestinal blood flow, and nutrient absorption when administered exogenously. We aimed to delineate the effects of endogenous GLP-2R signalling in conditions of nutrient deprivation and excess. Using a mouse with a targeted genetic deletion of the Glp2r gene (Glp2r-/-), we addressed the hypothesis that the known GLP-2R is required for intestinal adaptation to nutrient deprivation and excess. In Chapter 2, we demonstrate that Glp2r−/− mice fasted for 24 hours and re-fed for 24 hours failed to increase intestinal growth and jejunal crypt cell proliferation compared to littermate Glp2r+/+ mice. Administration of EGF to Glp2r−/− during the re-feeding period rescued this re-feeding defect. Wildtype mice re-fed for 30, 90, and 180 minutes following a 24 hour fast displayed increased jejunal mRNA levels of the ErbB ligands amphiregulin, epiregulin and HB-EGF. Treatment with the pan ErbB inhibitor CI-1033 inhibited induction of these ErbB ligands in jejunum of mice in association with prevention of crypt cell proliferation. Re-feeding also caused an increase in jejunal p-Akt levels and treatment with CI-1033 prevented increased p-Akt levels. Moreover, re-fed Glp2r−/− mice failed to increase ErbB ligands or p-Akt levels 90 minutes following re-feeding when compared to Glp2r+/+ littermates. Therefore, the GLP-2R is essential for re-feeding induced intestinal adaptation by activating the ErbB network and p-Akt to increase crypt cell proliferation. In Chapter 3, we show that the known GLP-2R is not required for intestinal adaptation to a perceived nutrient deprivation challenge (STZ-induced diabetes) or chronic nutrient excess (high-fat diet induced glucose intolerance). Although exogenous GLP-2 administration has been previously shown to stimulate glucagon secretion, glucose homeostasis was normal in STZ-diabetic and high fat fed Glp2r−/− mice. We also developed a third model of diabetes and glucose intolerance: ob/ob: Glp2r−/−. In the absence of GLP-2R signalling, ob/ob mice display improved oral but impaired intraperitoneal glucose tolerance, elevated fed and fasted glucose levels, increased circulating glucagon, decreased beta cell and increased alpha cell mass. Taken together, these results suggest that endogenous GLP-2R signalling is essential for intestinal and islet adaptation to conditions of nutrient deprivation and excess.
3

Mechanisms underlying Metformin-induced Secretion of Glucagon-like Peptide-1 from the Intestinal L-cell

Mulherin, Andrew 15 December 2011 (has links)
The incretin hormone glucagon-like peptide-1 enhances glucose-dependent insulin secretion and is therefore a most attractive therapeutic approach for the treatment of Type 2 Diabetes Mellitus. The anti-diabetic drug, metformin, has previously been shown to increase circulating levels of GLP-1, although its mechanism of action is currently unknown. Neither metformin nor AICAR (activators of AMPK) directly stimulated GLP-1 secretion from the L-cell in vitro. However, oral treatment of rats with metformin enhanced plasma levels of active and total GLP-1, independent of GLP-1 degradation. Furthermore, pre-treatment with the general muscarinic antagonist, atropine, or the M3 antagonist, 4-DAMP, decreased metformin–induced GLP-1 secretion, while M1 and M2 antagonists did not. Chronic bilateral subdiaphragmatic vagotomy had no effect, while the GRP antagonist, RC-3095, reduced metformin-induced GLP-1secretion. Therefore, I conclude that metformin-induced GLP-1 secretion occurs in part through the parasympathetic nervous system, the M3 and GRP receptors, but is independent of the vagus nerve.
4

Mechanisms underlying Metformin-induced Secretion of Glucagon-like Peptide-1 from the Intestinal L-cell

Mulherin, Andrew 15 December 2011 (has links)
The incretin hormone glucagon-like peptide-1 enhances glucose-dependent insulin secretion and is therefore a most attractive therapeutic approach for the treatment of Type 2 Diabetes Mellitus. The anti-diabetic drug, metformin, has previously been shown to increase circulating levels of GLP-1, although its mechanism of action is currently unknown. Neither metformin nor AICAR (activators of AMPK) directly stimulated GLP-1 secretion from the L-cell in vitro. However, oral treatment of rats with metformin enhanced plasma levels of active and total GLP-1, independent of GLP-1 degradation. Furthermore, pre-treatment with the general muscarinic antagonist, atropine, or the M3 antagonist, 4-DAMP, decreased metformin–induced GLP-1 secretion, while M1 and M2 antagonists did not. Chronic bilateral subdiaphragmatic vagotomy had no effect, while the GRP antagonist, RC-3095, reduced metformin-induced GLP-1secretion. Therefore, I conclude that metformin-induced GLP-1 secretion occurs in part through the parasympathetic nervous system, the M3 and GRP receptors, but is independent of the vagus nerve.
5

Mechanisms of Glucagon-like Peptide-2-mediated Effects on Intestinal Barrier Function in Health and Irinotecan-induced Enteritis

Dong, Charlotte 22 November 2013 (has links)
Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes gut growth through an insulin-like growth factor (IGF)-1 and intestinal epithelial (IE)-IGF-1 receptor (R)-dependent pathway. GLP-2 also promotes epithelial barrier function by as yet unknown mechanisms. I hypothesized that GLP-2-mediated effects on barrier function requires the IE-IGF-1R. Chronic GLP-2 treatment enhanced barrier function by decreasing gastrointestinal permeability in vivo and increasing jejunal resistance ex vivo. These responses were abolished in inducible IE-IGF-1R knockout (KO) animals. Additionally, epithelial sealing tight junctional proteins claudin-3 and -7 were upregulated by GLP-2 in control but not KO mice. Moreover, IE-IGF-1R deletion induced a shift in occludin localization from apical to intracellular domains. In contrast, in irinotecan-induced enteritis, GLP-2 normalized epithelial barrier function in control animals, but continued to be ineffective in KO mice. Collectively, the effects of GLP-2 on barrier function are dependent on the IE-IGF-1R and involve modulation of the tight junctional complex.
6

Mechanisms of Glucagon-like Peptide-2-mediated Effects on Intestinal Barrier Function in Health and Irinotecan-induced Enteritis

Dong, Charlotte 22 November 2013 (has links)
Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes gut growth through an insulin-like growth factor (IGF)-1 and intestinal epithelial (IE)-IGF-1 receptor (R)-dependent pathway. GLP-2 also promotes epithelial barrier function by as yet unknown mechanisms. I hypothesized that GLP-2-mediated effects on barrier function requires the IE-IGF-1R. Chronic GLP-2 treatment enhanced barrier function by decreasing gastrointestinal permeability in vivo and increasing jejunal resistance ex vivo. These responses were abolished in inducible IE-IGF-1R knockout (KO) animals. Additionally, epithelial sealing tight junctional proteins claudin-3 and -7 were upregulated by GLP-2 in control but not KO mice. Moreover, IE-IGF-1R deletion induced a shift in occludin localization from apical to intracellular domains. In contrast, in irinotecan-induced enteritis, GLP-2 normalized epithelial barrier function in control animals, but continued to be ineffective in KO mice. Collectively, the effects of GLP-2 on barrier function are dependent on the IE-IGF-1R and involve modulation of the tight junctional complex.
7

The Role of GLP Domains in Spreading of the G9a/GLP Complex and Regulation of the β-globin Gene Expression

Thieba, Camilia Annik 02 May 2012 (has links)
Marked by a defect in the production of the Beta (β)-globin chain that make-up hemoglobin, Beta (β)-thalassemia is the most prevalent form of inherited single-gene disorders in the world. To understand the molecular mechanisms that govern the expression of the β-globin polypeptide encoded by the β-globin locus, we examined closely the enzymes involved in the epigenetic regulation of gene expression through histone 3 lysine 9 mono and di-methylation (H3K9 me1/2). G9a-like protein (GLP), a mammalian methyltransferase involved in the establishment and maintenance of H3K9 me1/2 mark at euchromatin, regions was found to be critical for the full activation of the adult β-globin genes in vivo during Murine erythroleukemia cell line (MEL) differentiation. Though it was initially hypothesized that GLP binding to H3K9 me1/2 mark through its Ankyrin domain was key to its activating function, we found that Flag- GLP ankyrin mutants E817R and W791A unable to bind to the methyl mark, are able to activate β-globin genes as well as their wild-type counterpart. Additionally, this study found that the embryonic gene εγ, known to be re-activated after G9a KD at the mRNA level, was effectively transcribed at the protein level using Triton Urea Acetic acid (TAU) western blots, thereby identifying potential therapeutic applications for treatment for β-thalassemia patients.
8

Mechanisms Underlying Cardioprotective Effects of Glucagon like Peptide-1 in Ischemia-reperfusion Injury

Ban, Kiwon 04 August 2010 (has links)
Cardioprotective effects of glucagon-like peptide-1 (GLP-1), the GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4), and GLP-1(9-36), a cleavage product of GLP-1, were examined in ischemia-reperfusion (I/R) models of both isolated mouse hearts and cultured cardiac myocytes (CMs) using both wild-type (WT) and GLP-1R knockout (Glp1r-/-) mice. In WT hearts, GLP-1 and Ex-4 significantly improved left ventricular functional recovery vs. untreated controls following I/R, whether the drugs were administered prior to ischemia (pre-ischemia) or during reperfusion (post-ischemia). Surprisingly, the cardioprotective effects of pre- and post-ischemia treatments with GLP-1, but not Ex-4, remained evident in Glp1r-/- hearts. Although pre-ischemia infusion of GLP-1(9-36) induced lower functional recovery than untreated controls, post-ishemia infusion of GLP-1(9-36) augmented functional recovery and reduced infarct size to a similar extent to that of GLP-1 and Ex-4 in hearts from both WT and Glp1r-/- mice. Mass spectrometry was used to assay conversion of GLP-1 to GLP-1(9-36) in coronary effluents of isolated mouse hearts. Within 15 min of infusing GLP-1, significant amounts of GLP-1(9-36) were generated by the heart. By 30 min, only trace amounts of intact GLP-1 remained in coronary effluents indicating the heart rapidly converts GLP-1 to GLP-1(9-36). In CMs undergoing simulated I/R injury in vitro, both GLP-1(9-36) and Ex-4 significantly improved cell viability, LDH release and caspase-3 activation. These effects were significantly attenuated by co-treatments with LY294002, PD98059 and Ex(9-39), inhibitors of PI3K, ERK1/2, and GLP-1R respectively. The actions of Ex-4, but not GLP-1(9-36), were lost in CMs isolated from Glp1r-/- mice and only GLP-1(9-36), but not Ex-4, improved the survival of human aortic endothelial cells (HAEC) undergoing simulated I/R injury. Of note, both GLP-1 and GLP-1(9-36) treatments also demonstrated potent vasodilatory effects, as manifested by increased coronary flow rates in isolated hearts and increased diameters of pre-constricted mesenteric arteries isolated from both WT and Glp1r-/- mice. The cardioprotective effects on isolated hearts and vasodilatory effects on isolated mesenteric arteries, induced by GLP-1 was blunted by co-treatment with a dipeptidyl peptidase-4 (DPP-4) enzyme inhibitor known to block conversion of GLP-1 to GLP-1(9-36). Together, these data suggest that the beneficial effects of GLP-1 in I/R injury are mediated in part by GLP(9-36) and support the existence of a GLP-1(9-36) responsive, but Ex(9-39)-sensitive cardioprotective signaling pathway distinct from that associated with the classical GLP-1R.
9

The Role of the GLP-2 Receptor in Intestinal and Islet Adaptation to Changes in Nutrient Availability

Bahrami, Jasmine 16 March 2011 (has links)
GLP-2 is a potent intestinotrophic peptide that can increase mucosal growth, intestinal blood flow, and nutrient absorption when administered exogenously. We aimed to delineate the effects of endogenous GLP-2R signalling in conditions of nutrient deprivation and excess. Using a mouse with a targeted genetic deletion of the Glp2r gene (Glp2r-/-), we addressed the hypothesis that the known GLP-2R is required for intestinal adaptation to nutrient deprivation and excess. In Chapter 2, we demonstrate that Glp2r−/− mice fasted for 24 hours and re-fed for 24 hours failed to increase intestinal growth and jejunal crypt cell proliferation compared to littermate Glp2r+/+ mice. Administration of EGF to Glp2r−/− during the re-feeding period rescued this re-feeding defect. Wildtype mice re-fed for 30, 90, and 180 minutes following a 24 hour fast displayed increased jejunal mRNA levels of the ErbB ligands amphiregulin, epiregulin and HB-EGF. Treatment with the pan ErbB inhibitor CI-1033 inhibited induction of these ErbB ligands in jejunum of mice in association with prevention of crypt cell proliferation. Re-feeding also caused an increase in jejunal p-Akt levels and treatment with CI-1033 prevented increased p-Akt levels. Moreover, re-fed Glp2r−/− mice failed to increase ErbB ligands or p-Akt levels 90 minutes following re-feeding when compared to Glp2r+/+ littermates. Therefore, the GLP-2R is essential for re-feeding induced intestinal adaptation by activating the ErbB network and p-Akt to increase crypt cell proliferation. In Chapter 3, we show that the known GLP-2R is not required for intestinal adaptation to a perceived nutrient deprivation challenge (STZ-induced diabetes) or chronic nutrient excess (high-fat diet induced glucose intolerance). Although exogenous GLP-2 administration has been previously shown to stimulate glucagon secretion, glucose homeostasis was normal in STZ-diabetic and high fat fed Glp2r−/− mice. We also developed a third model of diabetes and glucose intolerance: ob/ob: Glp2r−/−. In the absence of GLP-2R signalling, ob/ob mice display improved oral but impaired intraperitoneal glucose tolerance, elevated fed and fasted glucose levels, increased circulating glucagon, decreased beta cell and increased alpha cell mass. Taken together, these results suggest that endogenous GLP-2R signalling is essential for intestinal and islet adaptation to conditions of nutrient deprivation and excess.
10

Construcción del Gasocentro GNV- GLP “Energigas” La Molina

Rodríguez Pinedo, Carmen Rosa January 2010 (has links)
He tomado de mi experiencia laboral la construcción del Gasocentro de GNV y GLP ubicado en el distrito de La Molina, por ser una obra en la cual he podido reforzar conocimientos aprendidos durante mi etapa universitaria. El establecimiento de venta de GNV (Gas Natural Vehicular) y GLP (Gas Licuado de Petróleo) consiste en la construcción de un sistema dual de muros y pórticos de concreto armado. Cuenta con un sistema de seguridad preventiva contra posibles incendios de los cuales permiten en caso de emergencia actuar rápidamente controlar y sofocar un incendio tanto de vehículos o equipos dentro de la estación.

Page generated in 0.0189 seconds