• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • Tagged with
  • 20
  • 20
  • 14
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of Glutamate Transporters in Alcohol and Methamphetamine Co-Abuse

Alshehri, Fahad January 2015 (has links)
No description available.
2

Evaluation of the Role of Astrocyte Glutamate Transport and of Synaptic NMDA Receptor Subtype Representation in the Pathogenesis of PTSD

Cotrone, Thomas Steven 22 June 2017 (has links)
Post-traumatic stress disorder (PTSD) is a psychological disorder that can cause great social/economic hardship. Progress towards treating PTSD has been slow due to a lack of understanding of its pathogenesis. This dissertation aimed to address this issue by investigating the involvement of the astrocytic glutamate reuptake transporter, GLT-1, and regional differences in expression of NMDA receptor subtypes in the development of a rat model of PTSD. We hypothesized that impaired astrocytic glutamate reuptake inhibits long-term memory processes, and that concurrent presence of glucocorticoids (GCs) during situational trauma selectively inhibits fear extinction memory processes in the prefrontal cortex, but not of conditioned fear memory processes in the amygdala, due to differences between these brain regions in expression of NMDA receptor subtypes. The effect of GLT-1 manipulation was studied in vivo. Utilizing the Single Prolonged Stress (SPS) model of PTSD, rats were either exposed to SPS or not. Within these groups, rats were administered a saline sham, a GLT-1 facilitator (ceftriaxone (CEF)), or a GLT-1 inhibitor (dihydrokainic acid (DHK)). Using Classical Fear Conditioning (CFC) and Fear Extinction (EXT) paradigms, retention of fear extinction memories was measured to determine the effect of GLT-1 manipulation on SPS-induced behavior (i.e., impaired fear extinction retention). From the brain of each rat, the amygdala, hippocampus, and prefrontal cortex (PFC) were collected and expression of GLT-1, p-CREB (a molecular indicator of long-term memory), and glucocorticoid receptor (GR, a molecular indicator of a PTSD-like state) were quantified. Analysis of the behavioral data showed that SPS exposure alone reduced the retention of extinction memories, but CEF and DHK both eliminated this effect. Analysis of the brain tissues revealed that SPS induced an increase in GR expression in the hippocampus. SPS also increased GLT-1 expression, but not p-CREB, in the PFC and amygdala. To evaluate the involvement of regional differences in NMDA receptor subtype expression ex vivo, tissue sections of amygdala, hippocampus, and PFC were taken from SPS and non-SPS exposed rats. Synaptic transmission was stimulated in these tissues using bicuculline in the presence of glucocorticoids, NVP-AA077 (a NR2A NMDA receptor subtype inhibitor), or Ro-25 (a NR2B NMDA receptor subtype inhibitor). P-CREB was measured in the tissues treated with GCs to determine if GCs exert greater inhibition of long-term memory in the PFC (a region reported to express high NR2A) than in the amygdala (a region reported to express high NR2B). P-CREB was also measured in the tissues treated with NVP or Ro-25 to determine if these reported receptor profile differences could be demonstrated, and if they changed following SPS exposure. Contrary to the stated hypothesis, analysis of non-SPS exposed rats revealed that GCs, NVP, and Ro-25 decreased p-CREB in all three regions with no differences between regions. However, in the SPS exposed group, p-CREB was not decreased in PFC and hippocampal tissues treated with GCs, amygdalar and PFC tissues treated with NVP, and PFC tissue treated with Ro-25. Overall, the results of the in vivo experiment did not convincingly demonstrate a role of glutamate spill-over in the pathogenesis of PTSD, but did show that modulation of glutamate reuptake can mitigate some of the behavioral consequences of exposure to situational trauma. The results of the ex vivo experiment did not reveal evidence that regional differences in NMDA receptor profiles exist across the three regions analyzed, nor did they show that GCs exert a region specific inhibition of long-term memory formation. However, it was demonstrated that SPS may affect long-term memory by altering expression of synaptic NMDA receptors. This study provides evidence that glial cells may play a role in the pathogenesis of PTSD, and thus may serve as targets for future therapy. / Ph. D.
3

Glutamatergic and Neuroimmune Mechanisms of N-acetylcysteine-Mediated Inhibition of Cue-Induced Nicotine Seeking

January 2019 (has links)
abstract: Nicotine self-administration is associated with decreased expression of the glial glutamate transporter 1 (GLT-1) and the cystine-glutamate exchange protein xCT in the nucleus accumbens core (NAcore). N-acetylcysteine (NAC), which is an antioxidant, anti-inflammatory, and glutamatergic agent, restores these proteins associated with increased relapse vulnerability. However, the specific molecular mechanisms driving NAC inhibitory effects on cue-induced nicotine reinstatement are unknown. Thus, the present study assessed NAC’s effects on cue-induced nicotine reinstatement are dependent on NAcore GLT-1 expression. Here, rats were treated with NAC in combination with intra-NAcore vivo-morpholinos to examine the role of GLT-1 in NAC-mediated inhibition of cue-induced nicotine seeking. Subchronic NAC treatment attenuated cue-induced nicotine seeking in male rats and an antisense vivo-morpholino (AS) designed to selectively suppress GLT-1 expression in the NAcore blocked this effect. NAC treatment was also associated with an inhibition of pro-inflammatory tumor necrosis factor alpha (TNFα) expression in the NAcore. As well, GLT-1 AS markedly increased expression of CD40, a known marker of pro-inflammatory M1 activation of microglia and macrophages. To further examine whether NAC-induced decreases in nicotine seeking involve suppression of TNFα, we manipulated a downstream mediator of this pathway, nuclear factor kappa B (NF-kB). Considering the putative role of NF-κB in learning, memory, and synaptic plasticity, separate experiments were performed where rats were treated with herpes simplex virus (HSV) vectors designed to increase (HSV-IKKca) or decrease (HSV-IKKdn) NF-κB signaling through interactions with IκB Kinase (IKK). The goal was to examine the role of NF-κB signaling in mediating nicotine seeking behavior and if NF-κB signaling regulates GLT-1 expression. HSV-IKKdn alone and in combination with NAC inhibited cue-induced nicotine reinstatement, while HSV-IKKca blocked the attenuating effect of NAC on reinstatement. Interestingly, both HSV-IKKdn and HSV-IKKca, regardless of NAC treatment, inhibited GLT-1 expression. Taken together, these results suggest that while GLT-1 may be a conserved neurobiological substrate underlying relapse vulnerability across drugs of abuse, immunomodulatory mechanisms may regulate drug-induced alterations in glutamatergic plasticity that mediate cue-induced drug-seeking behavior through GLT-1-independent mechanisms. / Dissertation/Thesis / Masters Thesis Psychology 2019
4

Role of Modulating Glutamate Transporters on Hydrocodone and Alcohol Co-Abuse inAlcohol-Preferring Rats

Alshehri, Fahad January 2018 (has links)
No description available.
5

Riluzole neuroprotection in a parkinson’s disease model involves suppression of reactive astrocytosis but not GLT-1 regulation.

Carbone, M., Duty, S., Rattray, Marcus 04 1900 (has links)
yes / Background: Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson’s disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. Results: Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. Conclusions: The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson’s disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.
6

Astrocytes grown in Alvetex® 3 dimensional scaffolds retain a non-reactive phenotype

Ugbode, Christopher I., Hirst, W.D., Rattray, Marcus 22 June 2015 (has links)
yes / Protocols which permit the extraction of primary astrocytes from either embryonic or postnatal mice are well established however astrocytes in culture are different to those in the mature CNS. Three dimensional (3D) cultures, using a variety of scaffolds may enable better phenotypic properties to be developed in culture. We present data from embryonic (E15) and postnatal (P4) murine primary cortical astrocytes grown on coated coverslips or a 3D polystyrene scaffold, Alvetex. Growth of both embryonic and postnatal primary astrocytes in the 3D scaffold changed astrocyte morphology to a mature, protoplasmic phenotype. Embryonic-derived astrocytes in 3D expressed markers of mature astrocytes, namely the glutamate transporter GLT-1 with low levels of the chondroitin sulphate proteoglycans, NG2 and SMC3. Embroynic astrocytes derived in 3D show lower levels of markers of reactive astrocytes, namely GFAP and mRNA levels of LCN2, PTX3, Serpina3n and Cx43. Postnatal-derived astrocytes show few protein changes between 2D and 3D conditions. Our data shows that Alvetex is a suitable scaffold for growth of astrocytes, and with appropriate choice of cells allows the maintenance of astrocytes with the properties of mature cells and a non-reactive phenotype. / BBSRC
7

Glutamate Transporter 1 in the Central Nervous System: Potential Target for the Treatment of Alcohol Dependence

Sreemantula, Sai Nandini 16 May 2012 (has links)
No description available.
8

Effects of ß-lactam Compounds on GLT1 and xCT Expression levels as well as Ethanol Intake in Alcohol-Preferring Rats

Hakami, Alqassem Yahia I January 2015 (has links)
No description available.
9

THE ROLE OF GLIAL GLUTAMATE TRANSPORTER GLT-1 OVER-EXPRESSION IN MITIGATING VISCERAL NOCICEPTION

Yuan, Lin 01 November 2010 (has links)
No description available.
10

Glutamate Turnover and Energy Metabolism in Brain Injury : Clinical and Experimental Studies

Samuelsson, Carolina January 2008 (has links)
<p>During brain activity neurons release the major excitatory transmitter glutamate, which is taken up by astrocytes and converted to glutamine. Glutamine returns to neurons for re-conversion to glutamate. This glutamate-glutamine cycle is energy demanding. Glutamate turnover in injured brain was studied using an animal iron-induced posttraumatic epilepsy model and using neurointensive care data from 33 patients with spontaneous subarachnoid hemorrhage (SAH). Immunoblotting revealed that the functional form of the major astrocytic glutamate uptake protein GLT-1 was decreased 1-5 days following a cortical epileptogenic iron-injection, presumably due to oxidation-induced aggregation. Using microdialysis it was shown that the GLT-1 decrease was associated with increased interstitial glutamate levels and decreased interstitial glutamine levels. The results indicate a possible posttraumatic and post-stroke epileptogenic mechanism. Analysing 3600 microdialysis hours from patients it was found that the interstitial lactate/pyruvate (L/P) ratio correlate with the glutamine/glutamate ratio (r =-0.66). This correlation was as strong as the correlation between L/P and glutamate (r=0.68) and between lactate and glutamate (r=0.65). Pyruvate and glutamine correlated linearly (r=0.52). Energy failure periods, defined as L/P>40, were associated with high interstitial glutamate levels. Glutamine increased or decreased during energy failure periods depending on pyruvate. Energy failure periods were clinically associated with delayed ischemic neurological deficits (DIND) or development of radiologically verified infarcts, confirming that L/P>40 is a pathological microdialysis pattern that can predict ischemic deterioration after SAH. DIND-associated microdialysis patterns were L/P elevations and surges in interstitial glutamine. Glutamine and pyruvate correlated with the cerebral perfusion pressure (r=0.25, r=0.24). Glutamine and the glutamine/glutamate ratio correlated with the intracranial pressure (r=-0.29, r=0.40). Glutamine surges appeared upon substantial lowering of the intracranial pressure by increased cerebrospinal fluid drainage. Increased interstitial glutamine and pyruvate levels may reflect augmented astrocytic glycolysis in recovering brain tissue with increased energy demand due to a high glutamate-glutamine turnover.</p>

Page generated in 0.0279 seconds