• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhanced Acquisition Techniques for GPS L1C Receivers

Seals, Kelly Charles 13 March 2014 (has links)
A new, open-access Global Positioning System (GPS) signal, known as L1C, is the most recent of several modernized Global Positioning System (GPS) signals. The first launch of a GPS satellite with this signal is expected to occur within a few years. One of the interesting features of modern Global Navigation Satellite System (GNSS) signals, including GPS L1C, is the presence of data and pilot components. The pilot component is a carrier with a deterministic overlay code but no data symbols; whereas, the data component carries the navigation data symbols used in the receiver processing. A unique aspect of GPS L1C is the asymmetrical power split between the two components, 75% of the power is used for the pilot and the remaining power, or 25%, for the data. In addition, the pilot and the data components are transmitted in phase with orthogonal spreading codes. Unassisted acquisition of GNSS spread spectrum signals requires a two-dimensional search for the spreading code delay and Doppler frequency. For modern two-component GNSS signals, conventional GNSS acquisition schemes may be used on either component, correlating the received signal with either the pilot or the data spreading code. One obvious disadvantage of this approach is the wasting of power; hence, new techniques for combining, or joint acquisition of the pilot and the data components, have been proposed. In this dissertation, acquisition of GPS L1C is analyzed and receiver techniques are proposed for improving acquisition sensitivity. Optimal detectors for GPS L1C acquisition in additive white Gaussian noise are derived, based on various scenarios for a GPS receiver. Monte Carlo simulations are used to determine the performance of these optimal detectors, based on detection and false alarm probabilities. After investigating the optimal detectors for GPS L1C acquisition, various sub-optimal detectors that are more efficient to implement are thoroughly investigated and compared. Finally, schemes for joint acquisition of L1C and the legacy GPS C/A code signal are proposed and analyzed.

Page generated in 0.0225 seconds