Spelling suggestions: "subject:"denied flight"" "subject:"undenied flight""
1 |
A Vision-Based Relative Navigation Approach for Autonomous Multirotor AircraftLeishman, Robert C. 29 April 2013 (has links) (PDF)
Autonomous flight in unstructured, confined, and unknown GPS-denied environments is a challenging problem. Solutions could be tremendously beneficial for scenarios that require information about areas that are difficult to access and that present a great amount of risk. The goal of this research is to develop a new framework that enables improved solutions to this problem and to validate the approach with experiments using a hardware prototype. In Chapter 2 we examine the consequences and practical aspects of using an improved dynamic model for multirotor state estimation, using only IMU measurements. The improved model correctly explains the measurements available from the accelerometers on a multirotor. We provide hardware results demonstrating the improved attitude, velocity and even position estimates that can be achieved through the use of this model. We propose a new architecture to simplify some of the challenges that constrain GPS-denied aerial flight in Chapter 3. At the core, the approach combines visual graph-SLAM with a multiplicative extended Kalman filter (MEKF). More importantly, we depart from the common practice of estimating global states and instead keep the position and yaw states of the MEKF relative to the current node in the map. This relative navigation approach provides a tremendous benefit compared to maintaining estimates with respect to a single global coordinate frame. We discuss the architecture of this new system and provide important details for each component. We verify the approach with goal-directed autonomous flight-test results. The MEKF is the basis of the new relative navigation approach and is detailed in Chapter 4. We derive the relative filter and show how the states must be augmented and marginalized each time a new node is declared. The relative estimation approach is verified using hardware flight test results accompanied by comparisons to motion capture truth. Additionally, flight results with estimates in the control loop are provided. We believe that the relative, vision-based framework described in this work is an important step in furthering the capabilities of indoor aerial navigation in confined, unknown environments. Current approaches incur challenging problems by requiring globally referenced states. Utilizinga relative approach allows more flexibility as the critical, real-time processes of localization and control do not depend on computationally-demanding optimization and loop-closure processes.
|
2 |
Efficient Estimation for Small Multi-Rotor Air Vehicles Operating in Unknown, Indoor EnvironmentsMacdonald, John Charles 07 December 2012 (has links) (PDF)
In this dissertation we present advances in developing an autonomous air vehicle capable of navigating through unknown, indoor environments. The problem imposes stringent limits on the computational power available onboard the vehicle, but the environment necessitates using 3D sensors such as stereo or RGB-D cameras whose data requires significant processing. We address the problem by proposing and developing key elements of a relative navigation scheme that moves as many processing tasks as possible out of the time-critical functions needed to maintain flight. We present in Chapter 2 analysis and results for an improved multirotor helicopter state estimator. The filter generates more accurate estimates by using an improved dynamic model for the vehicle and by properly accounting for the correlations that exist in the uncertainty during state propagation. As a result, the filter can rely more heavily on frequent and easy to process measurements from gyroscopes and accelerometers, making it more robust to error in the processing intensive information received from the exteroceptive sensors. In Chapter 3 we present BERT, a novel approach to map optimization. The goal of map optimization is to produce an accurate global map of the environment by refining the relative pose transformation estimates generated by the real-time navigation system. We develop BERT to jointly optimize the global poses and relative transformations. BERT exploits properties of independence and conditional independence to allow new information to efficiently flow through the network of transformations. We show that BERT achieves the same final solution as a leading iterative optimization algorithm. However, BERT delivers noticeably better intermediate results for the relative transformation estimates. The improved intermediate results, along with more readily available covariance estimates, make BERT especially applicable to our problem where computational resources are limited. We conclude in Chapter 4 with analysis and results that extend BERT beyond the simple example of Chapter 3. We identify important structure in the network of transformations and address challenges arising in more general map optimization problems. We demonstrate results from several variations of the algorithm and conclude the dissertation with a roadmap for future work.
|
Page generated in 0.0355 seconds