Spelling suggestions: "subject:"bookbinding 2proteins"" "subject:"bookbinding 1proteins""
11 |
Structural characterization of a putative GTP-binding protein, EngB.January 2008 (has links)
Chan, Kwok Ho. / Thesis submitted in: November 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 124-129). / Abstracts in English and Chinese. / Statement --- p.I / Acknowledgements --- p.II / Abstract --- p.III / 摘要 --- p.IV / Table of Contents --- p.V / Abbreviations --- p.XIII / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- GTPase in general --- p.1 / Chapter 1.2 --- G proteins and GTP switch --- p.2 / Chapter 1.3 --- Structural similarities in GTPase --- p.3 / Chapter 1.4 --- G proteins in bacteria --- p.3 / Chapter 1.5 --- Background information of the protein family EngB --- p.4 / Chapter 1.6 --- Basic information of EngB in Thermotoga maritima --- p.5 / Chapter 1.7 --- Objectives of this work --- p.6 / Chapter Chapter 2 --- Materials and methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Chemical reagents --- p.8 / Chapter 2.1.2 --- Buffers / Chapter 2.1.2.1 --- Preparation of buffers --- p.10 / Chapter 2.1.2.2 --- Buffers for common use --- p.11 / Chapter 2.1.3 --- Expression strains and plasmids --- p.14 / Chapter 2.1.4 --- Primer list --- p.14 / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Preparation of competent cells --- p.15 / Chapter 2.2.2 --- Cloning / Chapter 2.2.2.1 --- Cloning of target genes by PCR --- p.15 / Chapter 2.2.2.2 --- Agrose gel electrophoresis --- p.17 / Chapter 2.2.2.3 --- Extraction and purification of DNA from agarose gel --- p.17 / Chapter 2.2.2.4 --- Restriction digestion of DNA --- p.18 / Chapter 2.2.2.5 --- Ligation of digested insert and expression vector --- p.18 / Chapter 2.2.2.6 --- Transformation and plating out transformants for miniprep --- p.19 / Chapter 2.2.2.7 --- Verification of insert by PCR --- p.20 / Chapter 2.2.2.8 --- Mini-preparation of plasmid DNA --- p.21 / Chapter 2.2.2.9 --- Confirmation of miniprep product by restriction enzyme digestion..… --- p.22 / Chapter 2.2.2.10 --- Sequencing of the plasmid DNA --- p.23 / Chapter 2.2.3 --- Expression of the recombinant MBP-TM EngB protein and SBP-CBP EC EngB / Chapter 2.2.3.1 --- Transformation for protein expression --- p.23 / Chapter 2.2.3.2 --- Preparation of starter culture --- p.24 / Chapter 2.2.3.3 --- Expression of recombinant protein --- p.24 / Chapter 2.2.3.4 --- Cell harvesting --- p.24 / Chapter 2.2.3.5 --- Releasing the cell content --- p.25 / Chapter 2.2.3.6 --- Check for protein expression by SDS-PAGE --- p.25 / Chapter 2.2.4 --- Purification of TM EngB / Chapter 2.2.4.1 --- SP ion-exchange chromatography --- p.27 / Chapter 2.2.4.2 --- Thrombin digestion to remove MBP tag --- p.28 / Chapter 2.2.4.3 --- Heparin affinity chromatography --- p.29 / Chapter 2.2.4.4 --- Gel filtration chromatography --- p.29 / Chapter 2.2.5 --- Purification of SBP-CBP EC EngB / Chapter 2.2.5.1 --- SP ion-exchange chromatography --- p.30 / Chapter 2.2.5.2 --- Gel filtration chromatography --- p.31 / Chapter 2.2.6 --- Protein concentration quantitation --- p.32 / Chapter 2.2.7 --- Crystallography of TM EngB / Chapter 2.2.7.1 --- Crystallization preparation --- p.32 / Chapter 2.2.7.2 --- Crystallization screening by sitting drop method --- p.32 / Chapter 2.2.7.3 --- Optimization of crystallization conditions --- p.33 / Chapter 2.2.7.4 --- X-ray diffraction --- p.33 / Chapter 2.2.8 --- Thermodynamics studies of proteins / Chapter 2.2.8.1 --- Preparation of protein sample --- p.34 / Chapter 2.2.8.2 --- Guanidine-induced denaturation experiment --- p.34 / Chapter 2.2.8.3 --- Thermal-induced denaturation experiment --- p.35 / Chapter 2.2.9 --- Binding assay to study affinity for ligands --- p.36 / Chapter 2.2.9.1 --- Using GDP analogue mant-GDP to detect formation of enzyme-ligand complex (TM EngB-mant-GDP) --- p.36 / Chapter 2.2.9.2 --- Basic information of Fluorescence spectroscopy --- p.36 / Chapter 2.2.9.3 --- Determination of λem and λex --- p.37 / Chapter 2.2.9.4 --- Studying ligand affinity by titration with ligand analogue --- p.37 / Chapter 2.2.10 --- Pull down experiment to study interacting partner of E. coli EngB --- p.38 / Chapter 2.2.10.1 --- Preparing protein extracts from E. coli --- p.38 / Chapter 2.2.10.2 --- Preparing streptavidin resin --- p.39 / Chapter 2.2.10.3 --- Binding of dual-tagged E. coli EngB to streptavidin resin --- p.39 / Chapter 2.2.10.4 --- Purifying protein using the prepared streptavidin resin --- p.40 / Chapter 2.2.10.5 --- Preparing calmodulin resin --- p.41 / Chapter 2.2.10.6 --- Binding of dual-tagged E.coli EngB to calmodulin resin --- p.41 / Chapter 2.2.10.7 --- Analysis of dual-tag affinity purified protein --- p.42 / Chapter 2.2.11 --- Silver staining of acrylamide gel / Chapter 2.2.11.1 --- Staining reagents --- p.42 / Chapter 2.2.11.2 --- Staining procedures --- p.43 / Chapter Chapter 3 --- Structure determination of T. maritima EngB by X-ray crystallography / Chapter 3.1 --- Introduction --- p.45 / Chapter 3.2 --- Generation of TM EngB expression construct --- p.45 / Chapter 3.3 --- Expression and purification of TM EngB --- p.46 / Chapter 3.4 --- TM EngB was crystallized with freshly purified TM EngB --- p.47 / Chapter 3.5 --- Data processing of diffraction data and structure refinement of TM EngB …… --- p.48 / Chapter 3.6 --- Apo-form TM EngB was obtained by unfolding and refolding --- p.49 / Chapter 3.7 --- Crystallization of apo-form TM EngB --- p.50 / Chapter 3.8 --- Data processing of diffraction data and structure refinement of apo-form TM EngB --- p.51 / Chapter 3.9 --- Producing EngB-GDP complex crystal from apo-from EngB --- p.52 / Chapter 3.10 --- TM EngB is a monomer in solution --- p.54 / Chapter 3.11 --- Summary of chapter three --- p.55 / Tables and figures of chapter three --- p.57 / Chapter Chapter 4 --- Structural details of TM EngB / Chapter 4.1 --- Introduction --- p.67 / Chapter 4.2 --- Overall fold of TM EngB --- p.67 / Chapter 4.3 --- Mode of nucleotide binding of TM EngB --- p.68 / Chapter 4.4 --- Structural differences in switch I region between chain A and chain B in crystal structure of TM EngB/GDP complex --- p.70 / Chapter 4.5 --- Structural difference between TM EngB/GDP complex and apo TM EngB --- p.73 / Chapter 4.6 --- Summary of chapter four --- p.73 / Tables and figures of chapter four --- p.76 / Chapter Chapter 5 --- Purified TM EngB is Active for binding guanine nucleotide but inactive for GTPase hydrolysis activity / Chapter 5.1 --- Introduction --- p.88 / Chapter 5.2 --- Studying ligand affinity by competitive binding experiment --- p.88 / Chapter 5.3 --- GDP binds to TMEngB with higher affinity than GTPyS --- p.91 / Chapter 5.4 --- TM EngB showed very low intrinsic GTPase activity --- p.92 / Chapter 5.5 --- Discussion --- p.93 / Tables and figures of chapter five --- p.95 / Chapter Chapter 6 --- Thermostability of EngB of T. maritima / Chapter 6.1 --- Introduction --- p.98 / Chapter 6.2 --- Guanidine hydrochloride - induced unfolding --- p.98 / Chapter 6.3 --- Thermal-induced unfolding --- p.99 / Chapter 6.4 --- Structural comparison of thermophilic and mesophilic EngB --- p.100 / Chapter 6.5 --- Discussion --- p.102 / Tables and figures of chapter six --- p.105 / Chapter Chapter 7 --- Construction of a dual-tag affinity pull-down system for finding interacting partner of EngB / Chapter 7.1 --- Introduction --- p.112 / Chapter 7.2 --- Preparation of dual-tagged E.coli EngB / Chapter 7.2.1 --- Cloning of SBP-CBP-EC EngB expression construct --- p.113 / Chapter 7.2.2 --- Expression and purification of SBP-CBP-EC EngB --- p.114 / Chapter 7.3 --- Pull down using dual tagged E.coli EngB as bait to isolate potential interacting partners of EngB --- p.114 / Chapter 7.4 --- Discussion --- p.115 / Tables and figures of chapter seven --- p.117 / Chapter Chapter 8 --- Conclusion --- p.122 / References --- p.124
|
12 |
Molecular mechanisms of G protein-receptor couplingSlessareva, Janna Eugenievna. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vi, 200 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
13 |
Molecular mechanisms of G protein-receptor couplingMa, Hongzheng. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains viii, 264 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
14 |
Assembly and function of multimeric adenylyl cyclase signalling complexesBaragli, Alessandra. January 2007 (has links)
G protein coupled receptors, G proteins and their downstream effectors adenylyl cyclase (ACs) were thought to transiently interact at the plasma membrane by random collisions following agonist stimulation. However a growing number of studies have suggested that a major revision of this paradigm was necessary to account for signal transduction specificity and efficiency. The revised model suggests that signalling proteins are pre-assembled as stable macromolecular complexes together with modulators of their activity prior to receptor activation. How and where these signalling complexes form and the mechanisms governing their assembly and maintenance are not completely understood yet. Initially, we addressed this question by exploring AC2 interaction with beta2-adrenergic receptors (beta2ARs) and heterotrimeric G proteins as parts of a pre-assembled signalling complex. Using a combination of biophysical and biochemical techniques, we showed that AC2 interacts with them before it is trafficked to the cell surface in transfected HEK-293 cells. These interactions are constitutive and do not require stimulation by receptor agonists. Furthermore, the use of dominant-negative Rab/Sar monomeric GTPases and dominant-negative heterotrimeric G protein subunits proved that AC2/beta2AR and AC2/Gbetagamma interactions occurred in the ER as measured using both BRET and co-immunoprecipitation experiments, while interaction of the Galpha subunits with the above complexes occurred at a slightly later stage. Both Galpha and Gbetagamma played a role in stabilizing these complexes. Our data also demonstrated that stimulation of AC was still possible when the complex remained on the inside of the cell but was reduced when the GalphaS/AC2 interaction was blocked, suggesting that the addition of the GalphaS subunit was required to render the nascent complexes functional prior to trafficking to proper sites of action. Next, we tackled the issue of higher order assembly of effectors and G proteins, using two different AC isoforms and GalphaS as a model. We demonstrated that AC2 can form heterodimers with AC5 through direct molecular interaction in unstimulated HEK-293 cells. AC2/5 heterodimerization resulted in a reduced total level of AC2 expression, which affected cellular accumulation of cAMP upon forskolin stimulation. The AC2/5 complex was stable in presence of receptor or forskolin stimulation. We provided evidence that co-expression with GalphaS increased the affinity of AC2 for AC5 as monitored by BRET. In particular, the complex formed by AC2/5 lead to synergistic accumulation of cAMP in presence of GalphaS and forskolin, with respect to either of the parent AC isoforms themselves. Finally, we also showed that this complex can be detected in native tissues, as AC2 and AC5 could be co-immunoprecipiated from lysates of mouse heart. Taken together, we provided evidence for stable formation of signalling complexes involving receptor/G proteins/adenylyl cyclase or G proteins/heterodimeric adenylyl cyclases and that G proteins play a crucial role for their assembly and function.
|
15 |
G-proteins and adenylyl cyclase in Alzheimer's disease postmortem brain /García-Jiménez, Angela, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 5 uppsatser.
|
16 |
Dopamine D2 receptor G protein coupling and its regulation /Terasmaa, Anton, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 6 uppsatser.
|
17 |
Cloning, expression, and characterization of a novel guanylate-binding protein, mGBP3 in the murine erythroid progenitor cells /Han, Byung Hee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 1997. / "May 1997." Typescript. Vita. Includes bibliographical references (leaves 147-162). Also available on the Internet.
|
18 |
Molecular regulation of opioid receptors /Kovoor, Abraham, January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [93]-107).
|
19 |
Agonist-dependent regulation of muscarinic acetylcholine receptor expression and function /Schlador, Michael Lee, January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 149-170).
|
20 |
A model system for investigating biomineralization : elucidating protein G/calcium oxalate monohydrate interactions /Clark, Ruti H. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 174).
|
Page generated in 0.0619 seconds