• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of a Multiphase Twin-screw Pump Operating at High Gas Volume Fractions

Kroupa, Ryan Daniel 2011 May 1900 (has links)
The use of twin-screw pumps for moving fluids is not new technology but its application to wet gas compression (high gas volume fraction [GVF]) is still considered relatively new. There are many advantages for using twin-screw pumps for oil field applications; three of the immediate improvements include reducing hardware costs, reducing well bore pressure, and producing a pressure boost to move the product to a central collection facility. While there are many advantages to using twin-screw pumps in wet gas applications, there are some problems that have been encountered while operating at high GVFs. When operating at high GVF, over 95 percent twin-screw pumps experience a severe loss of efficiency and an increase of operating temperature. A common way to increase the efficiency while operating in the high GVF range includes adding a liquid recirculation system where a portion of liquid is stored downstream of the pump and is injected into the pump inlet. These systems lower the effective GVF of the multiphase fluid below 95 percent in order to increase the pump efficiency. The first objective is to characterize the performance of a twin-screw pump fitted with a liquid recirculation system while operating under high GVF conditions. The second objective is to investigate the transient heat rise associated with high GVF operation. While traditional twin-screw pumps can be fitted with a liquid recirculation system to allow them to operate under high GVF conditions the pumps themselves are not optimized for wet gas compression and still suffer performance penalties. The results of this investigation show that the liquid recirculation system can allow the pump to operate under high GVF but the heat added to the system reduces the systems efficiency. Without a method of removing the heat generated in the pumping process the pump will not run at its optimal efficiency. The following investigation provides recommendations for further research in area of multiphase pumping using twin-screw pumps based on the characterization and transient studies provided in this thesis.
2

Separator Design for Use in High GVF Multiphase Flow

Cihak, Daniel 2012 August 1900 (has links)
The requirement of bringing an outside coolant source to run through the seals of a multiphase pump has always been a costly endeavor. Using a separator to extract liquid from the exhaust of the pump to use as a coolant is often more expensive than providing an outside source of coolant. This research proposes a cost effective separator design which efficiently separates the liquid from gas, while maintaining a high enough residence time to remove any gas entrainment, and separates only the seal flush requirement by letting any excess liquids carryover with the gas. Conventional multiphase separators operate by substantially decreasing the velocity of the mixture, which reduces the drag force put forth by the gasses and allows gravity to force the liquids downward. Gas-Liquid Cylindrical Cyclones (GLCCs) operate by increasing the velocity of the mixture, using radial force to separate liquids and gasses. This technique requires a smaller diameter vessel to achieve separation. The separator in this research uses gravity as the separation force while maintaining a pipe diameter similar to the GLCC. This way, only standard pipe and pipe fittings are used. The effectiveness of this design is measured two ways. First, efficiency is studied at varying gas volume fractions (GVFs), velocities, pressures, and pipe diameters. Second, the length of air entrainment (LAE) is measured at the same varying conditions. The efficiency and air entrainment studies provide design recommendations to accommodate seal flush requirements and size limitations. The following investigation also offers further areas of research to improve the understanding and modeling of using standard pipe and pipe fittings to create more effective design equations.
3

Object Call Graph Visualization

Tramnitzke, Danny January 2007 (has links)
<p>In this thesis an approach to visualize internal behaviour of object oriented software is developed.</p><p>The runtime information, which can be described as objects calling other objects, is displayed as a graph consisting of nodes and edges. The aim is to design an application in Java, which takes the runtime information in form of an object call graph and visualizes it as a tree and as a force directed view.</p><p>Therefore, first a data model has to be designed, holding an object call sequence. Furthermore, a discussion about graph definition languages and according tools is made. After this different graph layout algorithms are examined as well as graph displaying tools. Finally, the implementation of this visualization program deals with the combination of these three components graph data extraction, graph layout calculation and graph visualization.</p>
4

Direct Structured Finite Element Mesh Generation from Three-dimensional Medical Images of the Aorta

Bayat, Sharareh 06 May 2014 (has links)
Three-dimensional (3-D) medical imaging creates notable opportunities as input toward engineering analyses, whether for basic understanding of the normal function or patho-physiology of an organ, or for the simulation of virtual surgical procedures. These analyses most often require finite element (FE) models to be constructed from patient-specific 3-D medical images. However, creation of such models can be extremely labor-intensive; in addition, image processing and mesh generation are often operator-dependent, lack robustness and may be of suboptimal quality. Focusing on the human aorta, the goal of the present work is to create a fast and robust methodology for quadrilateral surface and hexahedral volume meshing from 3-D medical images with minimal user input. By making use of the segmentation capabilities of the 3-D gradient vector flow field combined with original ray-tracing and orientation control algorithms, we will demonstrate that it is possible to incrementally grow a structured quadrilateral surface mesh of the inner wall of the aorta. The process does not only require minimal input from the user, it is also robust and very fast compared to existing methods; it effectively combines segmentation and meshing into one single effort. After successfully testing the methodology and measuring the quality of the meshes produced by it from synthetic as well as real medical image datasets, we will make use of the surface mesh of the inner aortic wall to derive hexahedral meshes of the aortic wall thickness and of the fluid domain inside the aorta. We will finally outline a tentative approach to merge several structured meshes to process the main branches of the aorta.
5

Object Call Graph Visualization

Tramnitzke, Danny January 2007 (has links)
In this thesis an approach to visualize internal behaviour of object oriented software is developed. The runtime information, which can be described as objects calling other objects, is displayed as a graph consisting of nodes and edges. The aim is to design an application in Java, which takes the runtime information in form of an object call graph and visualizes it as a tree and as a force directed view. Therefore, first a data model has to be designed, holding an object call sequence. Furthermore, a discussion about graph definition languages and according tools is made. After this different graph layout algorithms are examined as well as graph displaying tools. Finally, the implementation of this visualization program deals with the combination of these three components graph data extraction, graph layout calculation and graph visualization.
6

Direct Structured Finite Element Mesh Generation from Three-dimensional Medical Images of the Aorta

Bayat, Sharareh January 2014 (has links)
Three-dimensional (3-D) medical imaging creates notable opportunities as input toward engineering analyses, whether for basic understanding of the normal function or patho-physiology of an organ, or for the simulation of virtual surgical procedures. These analyses most often require finite element (FE) models to be constructed from patient-specific 3-D medical images. However, creation of such models can be extremely labor-intensive; in addition, image processing and mesh generation are often operator-dependent, lack robustness and may be of suboptimal quality. Focusing on the human aorta, the goal of the present work is to create a fast and robust methodology for quadrilateral surface and hexahedral volume meshing from 3-D medical images with minimal user input. By making use of the segmentation capabilities of the 3-D gradient vector flow field combined with original ray-tracing and orientation control algorithms, we will demonstrate that it is possible to incrementally grow a structured quadrilateral surface mesh of the inner wall of the aorta. The process does not only require minimal input from the user, it is also robust and very fast compared to existing methods; it effectively combines segmentation and meshing into one single effort. After successfully testing the methodology and measuring the quality of the meshes produced by it from synthetic as well as real medical image datasets, we will make use of the surface mesh of the inner aortic wall to derive hexahedral meshes of the aortic wall thickness and of the fluid domain inside the aorta. We will finally outline a tentative approach to merge several structured meshes to process the main branches of the aorta.
7

Medical Image Registration and Application to Atlas-Based Segmentation

Guo, Yujun 01 May 2007 (has links)
No description available.
8

Modélisation d'objets 3D par fusion silhouettes-stéréo à partir de séquences d'images en rotation non calibrées

Hernández Esteban, Carlos 04 May 2004 (has links) (PDF)
Nous présentons une nouvelle approche pour la modélisation d'objets 3D de haute qualité à partir de séquences d'images en rotation partiellement calibrées. L'algorithme est capable: de calibrer la caméra (la pose et la longueur focale), de reconstruire la géométrie 3D et de créer une carte de texture. Par rapport à d'autres méthodes plus classiques, le calibrage est réalisé à partir d'un ensemble de silhouettes comme seule source d'information. Nous développons le concept de cohérence d'un ensemble de silhouettes généré par un objet 3D. Nous discutons d'abord la notion de cohérence de silhouettes et définissons un critère pratique pour l'estimer. Ce critère dépend à la fois des silhouettes et des paramètres des caméras qui les ont générées. Ces paramètres peuvent être estimés pour le problème de modélisation 3D en maximisant la cohérence globale des silhouettes. La méthode de reconstruction 3D est fondée sur l'utilisation d'un modèle déformable classique, qui définit le cadre dans lequel nous pouvons fusionner l'information de la texture et des silhouettes pour reconstruire la géométrie 3D. Cette fusion est accomplie en définissant deux forces basées sur les images: une force définie par la texture et une autre définie par les silhouettes. La force de texture est calculée en deux étapes: une approche corrélation multi-stéréo par décision majoritaire, et une étape de diffusion du vecteur gradient (GVF). En raison de la haute résolution de l'approche par décision majoritaire, une version multi-résolution du GVF a été développée. En ce qui concerne la force des silhouettes, une nouvelle formulation de la contrainte des silhouettes est dérivée. Elle fournit une manière robuste d'intégrer les silhouettes dans l'évolution du modèle déformable. A la fin de l'évolution, cette force fixe les contours générateurs du modèle 3D. Finalement, une carte de texture est calculée à partir des images originales et du modèle 3D reconstruit.

Page generated in 0.0273 seconds