• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 38
  • 25
  • 18
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 243
  • 71
  • 58
  • 47
  • 45
  • 45
  • 38
  • 33
  • 30
  • 29
  • 26
  • 22
  • 22
  • 21
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Genome-Wide Association Studies Combined with Genomic Selection as a Tool to Increase Fusarium Head Blight Resistance in Wheat and its Wild Relatives

Bartaula, Sampurna 10 June 2022 (has links)
Fusarium head blight (FHB) is a devastating wheat (Triticum aestivum L.) disease worldwide. Presently, there is insufficient FHB resistance in the Canadian wheat germplasm. Genome-wide association study (GWAS) and genomic selection (GS) can be utilized to identify sources of resistance that could benefit wheat breeding. To define the genetic architecture of FHB resistance, association panels from a spring and a winter collection were evaluated using the Wheat Illumina Infinium 90K array. A total of 206 accessions from the spring panel and 73 from the winter panel were evaluated in field trials for 3-4 years at two locations, namely Morden (Manitoba) and Ottawa (Ontario). These accessions were phenotyped for FHB incidence (INC), severity (SEV), visual rating index (VRI), and deoxynivalenol (DON) content. Significant (p < 0.05) differences among genotypes for all traits were found. Genetic characterization using the wheat 90K array identified a set of 20,501 single nucleotide polymorphisms (SNPs). The probe sequences (~100 bp) of these SNPs were mapped to the Chinese Spring reference genome v2.0 to identify 13,760 SNPs in the spring panel, and 10,421 SNPs in the winter panel covering all 21 wheat chromosomes. GWAS was performed to identify novel FHB resistance loci for INC, SEV, VRI and DON content for the spring and the combined panels separately using these 13,760 SNPs and for the winter panel using 10,421 SNPs. A total of 107, 157, 174 unique quantitative trait loci (QTNs) were identified for the four traits using two single-locus and seven multi-locus GWAS models for the spring, winter, and combined panels, respectively. These QTNs represent a valuable genetic resource for the improvement of FHB resistance in commercially grown wheat cultivars. In addition, these GWAS-defined QTNs were further used for GS to determine the breeding value (BV) of individuals as outlined below. In order to understand the role of the model and that of the marker type and density in trait prediction modelling, a GS study was conducted. GS is considered as an important tool for increasing genetic gain for economically important traits such as FHB resistance. GS uses genome-wide molecular markers to develop statistical models that predict genomic estimated breeding values (GEBVs) of an individual. Our results support genomic prediction (GP) as an alternative to phenotypic selection to predict the BVs of individuals for this trait. GS accounts for minor effect QTNs, which is beneficial when breeding for quantitative traits. Moderate to high GP accuracies can be achieved for FHB resistance-related traits when implemented in a breeding program. The correlation between the estimate of the missing phenotypic value and the observed phenotype is known as predictive ability (r). Overall, the predictive ability increased significantly using a QTN-based GP approach for FHB traits in wheat and its wild relatives. DON content had the highest predictive ability among all FHB traits, and that was in the winter panel, highlighting the importance of objectively measured traits in breeding for disease resistant genotypes. Interestingly, the winter panel contained several wild relative species that may harbor genes of interest to prevent the accumulation of mycotoxins in the grain. This study showed the usability of genomic prediction by improving the predictive ability of the FHB traits, which can be applied in early generation selection to accelerate the improvement of FHB resistance in wheat. The results show that GS can be successfully implemented in wheat breeding programs over multiple breeding cycles and can be effective for economically important traits. It is anticipated that GS will play a substantial role in the future of wheat breeding.
142

False and True Positives in Arthropod Thermal Adaptation Candidate Gene Lists

Herrmann, Maike, Yampolsky, Lev Y. 01 June 2021 (has links)
Genome-wide studies are prone to false positives due to inherently low priors and statistical power. One approach to ameliorate this problem is to seek validation of reported candidate genes across independent studies: genes with repeatedly discovered effects are less likely to be false positives. Inversely, genes reported only as many times as expected by chance alone, while possibly representing novel discoveries, are also more likely to be false positives. We show that, across over 30 genome-wide studies that reported Drosophila and Daphnia genes with possible roles in thermal adaptation, the combined lists of candidate genes and orthologous groups are rapidly approaching the total number of genes and orthologous groups in the respective genomes. This is consistent with the expectation of high frequency of false positives. The majority of these spurious candidates have been identified by one or a few studies, as expected by chance alone. In contrast, a noticeable minority of genes have been identified by numerous studies with the probabilities of such discoveries occurring by chance alone being exceedingly small. For this subset of genes, different studies are in agreement with each other despite differences in the ecological settings, genomic tools and methodology, and reporting thresholds. We provide a reference set of presumed true positives among Drosophila candidate genes and orthologous groups involved in response to changes in temperature, suitable for cross-validation purposes. Despite this approach being prone to false negatives, this list of presumed true positives includes several hundred genes, consistent with the “omnigenic” concept of genetic architecture of complex traits.
143

Genome-Wide Significant, Replicated and Functional Risk Variants for Alzheimer’s Disease

Guo, Xiaoyun, Qiu, Wenying, Garcia-Milian, Rolando, Lin, Xiandong, Zhang, Yong, Cao, Yuping, Tan, Yunlong, Wang, Zhiren, Shi, Jing, Wang, Jijun, Liu, Dengtang, Song, Lisheng, Xu, Yifeng, Wang, Xiaoping, Liu, Na, Sun, Tao, Zheng, Jianming, Luo, Justine, Zhang, Huihao, Xu, Jianying, Kang, Longli, Ma, Chao, Wang, Kesheng, Luo, Xingguang 01 November 2017 (has links)
Genome-wide association studies (GWASs) have reported numerous associations between risk variants and Alzheimer’s disease (AD). However, these associations do not necessarily indicate a causal relationship. If the risk variants can be demonstrated to be biologically functional, the possibility of a causal relationship would be increased. In this article, we reviewed all of the published GWASs to extract the genome-wide significant (p < 5×10−8) and replicated associations between risk variants and AD or AD-biomarkers. The regulatory effects of these risk variants on the expression of a novel class of non-coding RNAs (piRNAs) and protein-coding RNAs (mRNAs), the alteration of proteins caused by these variants, the associations between AD and these variants in our own sample, the expression of piRNAs, mRNAs and proteins in human brains targeted by these variants, the expression correlations between the risk genes and APOE, the pathways and networks that the risk genes belonged to, and the possible long non-coding RNAs (LncRNAs) that might regulate the risk genes were analyzed, to investigate the potential biological functions of the risk variants and explore the potential mechanisms underlying the SNP-AD associations. We found replicated and significant associations for AD or AD-biomarkers, surprisingly, only at 17 SNPs located in 11 genes/snRNAs/LncRNAs in eight genomic regions. Most of these 17 SNPs enriched some AD-related pathways or networks, and were potentially functional in regulating piRNAs and mRNAs; some SNPs were associated with AD in our sample, and some SNPs altered protein structures. Most of the protein-coding genes regulated by the risk SNPs were expressed in human brain and correlated with APOE expression. We conclude that these variants were most robust risk markers for AD, and their contributions to AD risk was likely to be causal. As expected, APOE and the lipoprotein metabolism pathway possess the highest weight among these contributions.
144

Genome-Wide Association Study on the Sleep Symptom of Post Traumatic Stress Disorder

Pooler, Tammy 01 January 2015 (has links)
Posttraumatic stress disorder (PTSD) is a psychiatric condition that presents with 3 main symptoms're-experiencing, avoidance/numbing, and hyper arousal'after an individual experiences a traumatic event. Recent evidence suggests a potential genetic basis for PTSD and a sub symptom of hyper arousal, sleep, as a potential pathway for PTSD development, but no study has identified candidate genes associated with specific symptoms such as sleep difficulty. Based on a conceptual framework in which specific genes are associated with the onset of PTSD, this study used a genome-wide association study (GWAS) method with a case control study design to compare the genomes of individuals with and without PTSD. A secondary GWAS dataset from a study on alcohol dependence in European and African Americans was obtained from the National Center for Biotechnology Information. PTSD cases and controls were analyzed using PLINK software. Signals from 2 single nucleotide polymorphisms (SNPs), which have not been previously associated with PTSD, exceeded the established genome-wide threshold: SNP rs13160949 on chromosome 5 (p = 7.33x10-9, OR: 1.565) and SNP rs2283877 on chromosome 22 (p = 2.55x10-8, OR: 1.748). Neither SNP, though, maintained genomewide significance following corrected tests for multiple testing, population stratification, and false discovery, so the planned analysis for possible associations with PTSD by symptom category then by the sub symptom of sleep could not be completed. The results of this study suggest that PTSD may be the result of polygenic SNPs with weak effects, which supports a recent study indicating the disease may be highly polygenic. Positive social change implications include bringing attention to the clinical and research community that PTSD may involve complex polygenic factors in need of further study.
145

Bovine Mastitis Resistance: Novel Quantitative Trait Loci and the Role of Bovine Mammary Epithelial Cells

Kurz, Jacqueline P. 01 May 2018 (has links)
Bovine mastitis, or inflammation of the mammary gland, has substantial economic and animal welfare implications. A genetic basis for mastitis resistance traits is recognized and can be used to guide selective breeding programs. The discovery of regions of the genome associated with mastitis resistance, and knowledge of the underlying molecular mechanisms responsible, can facilitate development of efficient mastitis control and therapeutic strategies. The objectives of this dissertation research were to identify sites of genetic variation associated with mastitis resistance, and to define the contributions of the milk-secreting epithelial cells to mammary gland immune responses and mastitis resistance. Twenty seven regions of the bovine genome potentially involved in mastitis resistance were identified in Holstein dairy cattle. Additionally, this research demonstrates a role of bovine mammary epithelial cells in mastitis resistance, and provides guidance for the use of an in vitro model for mastitis studies. Primary bovine mammary epithelial cells from mastitis-resistant cows have differential expression of 42 inflammatory genes compared with cells from mastitis-susceptible cows, highlighting the importance of epithelial cells in mastitis resistance. Bovine mammary epithelial cells display both similarities and differences in pro-inflammatory gene expression compared to fibroblasts, and their expression of inflammatory genes is influenced by administration of the enzyme phospholipase A2. The growth potential of milk-derived bovine mammary epithelial cells in vitro can be extended, facilitating their use in mastitis studies, by transfection with a viral protein. Collectively, this research contributes to current knowledge on bovine mastitis resistance and in vitro models.
146

Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies

Raza, Abbas 01 January 2020 (has links)
Our understanding of genetic predisposition to inflammatory and autoimmune diseases has been enhanced by large scale quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, the resolution and interpretation of QTL linkage mapping or GWAS findings are limited. In this work, we complement genetic predictions for several human diseases including multiple sclerosis (MS) and systemic capillary leakage syndrome (SCLS) with genetic and functional data in model organisms to associate genes with phenotypes and diseases. Focusing on MS, an autoimmune inflammatory disease of the central nervous system (CNS), we experimentally tested the effect of three of the GWAS candidate genes (SLAMF1, SLAMF2 and SLAMF7) in the experimental autoimmune encephalomyelitis (EAE) mouse model and found a male-specific locus distal to these loci regulating CNS autoimmune disease. Functional data in mouse suggests this male-specific locus modulates the frequency of immune cells including CD11b+, TCRαβ+CD4+Foxp3+, and TCRαβ+CD8+IL-17+ cells during EAE disease. Orchiectomy experiments demonstrate that this male specific phenotype is dependent on testis but not testosterone (T) or 5α-dihydrotestosterone (DHT). Using a bioinformatic approach, we identified SLAMF8 and SLAMF9 along with other differentially expressed genes in linkage with MS-GWAS predictions whose expression is testis-dependent, but not directly regulated by T or DHT, as potential positional candidates regulating CNS autoimmune disease. Further refinement of this locus is required to identify the causal gene(s) that may be targeted for prevention and/or treatment of MS in men. Using SCLS, an extremely rare disorder of unknown etiology characterized by recurrent episodes of vascular leakage, we identified and modeled this disease in an inbred mouse strain, SJL, using susceptibility to histamine- and infection-triggered vascular leak as the major phenotypic readout. This trait “Histamine hypersensitivity” (Histh/Histh) was mapped to a region on Chr 6. Remarkably, Histh is syntenic to the genomic locus most strongly associated with SCLS in humans (3p25.3). Subsequent studies found that the Histh locus is not unique to SJL but additional mouse strains also exhibit Histh phenotype. Considering GWAS studies in SCLS are limited by the small number of patients, we utilized interval-specific SNP-based association testing among Histh phenotyped mouse strains to predict Histh candidates. Furthermore, to dissect the complexity of Histh QTL, we developed network-based functional prediction methods to rank genes in this locus by predicting functional association with multiple Histh-related processes. The top-ranked genes include Cxcl12, Ret, Cacna1c, and Cntn3, all of which have strong functional associations and are proximal to SNPs segregating with Histh. Lastly, we utilized the power of integrating genetic and functional approaches to understand susceptibility to Bordetella pertussis and pertussis toxin (PTX) induced histamine sensitization (Bphs/Bphs), a sub-phenotype with an established role in autoimmunity. Congenic mapping in mice had earlier linked Bphs to histamine H1 receptor gene (Hrh1/H1R) and demonstrated that H1R differs at three amino acid residues in Bphs-susceptible and -resistant mice. Our subsequent studies identified eight inbred mouse strains that were susceptible to Bphs despite carrying a resistant H1R allele. Genetic analyses mapped the locus complementing Bphs to mouse Chr 6, in linkage disequilibrium with Hrh1; we have designated this Bphs-enhancer (Bphse). Similar to the approaches used for Histh, we utilized interval-specific SNP based association testing and network-based functional enrichment to predict nine candidate loci for Bphse including Atp2b2, Atg7, Pparg, Syn2, Ift122, Raf1, Mkrn2, Timp4 and Gt(ROSA)26Sor. Overall, these studies demonstrate the power of integrating genetic and functional methods in humans and animal models to predict highly plausible loci underlying QTL/GWAS data.
147

Bayesian Lasso for Detecting Rare Genetic Variants Associated with Common Diseases

Zhou, Xiaofei 23 October 2019 (has links)
No description available.
148

Genetic and environmental prediction of opioid cessation using machine learning, GWAS, and a mouse model

Cox, Jiayi Wu 30 January 2020 (has links)
The United States is currently experiencing an epidemic of opioid use, use disorder, and overdose-related deaths. While studies have identified several loci that are associated with opioid use disorder (OUD) risk, the genetic basis for the ability to discontinue opioid use has not been investigated. Furthermore, very few studies have investigated the non-genetic factors that are predictive of opioid cessation or their predictive ability. In this thesis, I studied a novel phenotype–opioid cessation, defined as the time since last use of illicit opioids (< 6 months ago as not cease, >1 year ago as cease) among persons meeting lifetime DSM-5 criteria for opioid use disorder (OUD). In chapter two, I identified novel genetic variants and biological pathways that potentially regulate opioid cessation success through a genome wide study, as well as genetic overlap between opioid cessation and other substance cessation traits. In chapter three, I identified multiple non-genetic risk factors specific to each racial group that are predictive of opioid cessation from the same individuals analyzed in chapter two by applying several linear and non-linear machine learning techniques to a set of more than 3,000 variables assessed by a structured psychiatric interview. Factors identified from this atheoretical approach can be grouped into opioid use activities, other drug use, health conditions, and demographics, while the predictive accuracy as high as nearly 80% was achieved. The findings from this research generated more hypotheses for future studies to reference. In chapter four, I performed differential gene expression and network analysis on mice with different oxycodone (an opioid receptor agonist)-induced behaviors and compared the significantly associated genes and network modules with top-ranked genes identified in humans. The pathway cross-talks and gene homologs identified from both species illuminate the potential molecular mechanism of opioid behaviors. In summary, this thesis utilized statistical genetics, machine learning, and a computational biology framework to address factors that are associative with opioid cessation in humans, and cross-referenced the genetic findings in a mouse model. These findings serve as references for future studies and provide a framework for personalizing the treatment of OUD.
149

Drivers of flower size evolution in the selfing species Arabidopsis thaliana

Fernández Mestre, Clàudia January 1900 (has links)
The influence of pollinators on the evolution of flower morphology has been extensively explored. Yet, the effect of other ecological factors, such as genetic drift, environmental filtering, and allometric constraints, gained less attention. In this study, we addressed the importance of those drivers in a predominantly selfing species. 400 worldwide Arabidopsis thaliana accessions were gathered and grown in semi-controlled climatic settings to explore the association between flower organ size, genotypes, and habitats. In our dataset, petal area was the most variable trait. Petal size was phenotypically and genetically correlated with other flowering structures, but no genetic allometry constraints were found to affect petal size evolution. The negative correlation of petal size with fitness and the traces of selective constraints in petal associated genes suggest that petal size is currently under selection in this species. We found paucity of genotypes harbouring large petals at low suitability regions, which points to the presence of environmental filtering. The novelty of this project relies on the pluralistic integration of factors studied and highlights the role of the climate on flower size evolution. Our results suggest that resource allocation is an important driver of flower size evolution in self-fertilising species but that its effect is largely determined by local environmental pressures.
150

Computational analysis of effects and interactions among human variants in complex diseases

Valentini, Samuel 18 October 2022 (has links)
In the last years, Genome-Wide Associations Studies (GWAS) found many variants associated with complex diseases. However, the biological and molecular links between these variants and phenotypes are still mostly unknown. Also, even if sample sizes are constantly increasing, the associated variants do not explain all the heritability estimated for many traits. Many hypotheses have been proposed to explain the problem: from variant-variant interactions, the effect of rare and ultra-rare coding variants and also technical biases related to sequencing or statistic on sexual chromosomes. In this thesis, we mainly explore the hypothesis of variant-variant interaction and, briefly, the rare coding variants hypothesis while also considering possible molecular effects like allele-specific expression and the effects of variants on protein interfaces. Some parts of the thesis are also devoted to explore the implementation of efficient computational tools to explore these effects and to perform scalable genotyping of germline single nucleotide polymorphisms (SNPs) in huge datasets. The main part of the thesis regards the development of a new resource to identify putative variant-variant interactions. In particular, we integrated ChIP-seq data from ENCODE, transcription factor binding motifs from several resources and genotype and transcript level data from GTeX and TCGA. This new dataset allows us to formalize new models, to make hypothesis and to find putative novel associations and interactions between (mainly non-coding) germline variants and phenotypes, like cancer-specific phenotypes. In particular, we focused on the characterization of breast cancer and Alzheimer’s Disease GWAS risk variants, looking for putative variants’ interactions. Recently, the study of rare variants has become feasible thanks to the biobanks that made available genotypes and clinical data of thousands of patients. We characterize and explore the possible effects of rare coding inherited polymorphisms on protein interfaces in the UKBioBank trying to understand if the change in structure of protein can be one of the causes of complex diseases. Another part of the thesis explores variants as causal molecular effect for allele-specific expression. In particular, we describe UTRs variants that can alter the post-transcriptional regulation in mRNA leading to a phenomenon where an allele is more expressed than the other. Finally, we show those variants can have prognostic significance in breast cancer. This thesis work introduces results and computational tools that can be useful to a broad community of researcher studying human polymorphisms effects.

Page generated in 0.0437 seconds