1 |
HCV-Infected Hepatocytes Drive CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> Regulatory T-cell Development Through the Tim-3/Gal-9 PathwayJi, Xiao J., Ma, Cheng J., Wang, Jia M., Wu, Xiao Y., Niki, Toshiro, Hirashima, Mitsumi, Moorman, Jonathan P., Yao, Zhi Q. 01 February 2013 (has links)
HCV is remarkable at disrupting human immunity to establish chronic infection. The accumulation of Treg cells at the site of infection and upregulation of inhibitory signaling pathways (such as T-cell Ig and mucin domain protein-3 (Tim-3) and galectin-9 (Gal-9)) play pivotal roles in suppressing antiviral effector T (Teff) cells that are essential for viral clearance. While Tim-3/Gal-9 interactions have been shown to negatively regulate Teff cells, their role in regulating Treg cells is poorly understood. To explore how Tim-3/Gal-9 interactions regulate HCV-mediated Treg-cell development, here we provide pilot data showing that HCV-infected human hepatocytes express higher levels of Gal-9 and TGF-β, and upregulate Tim-3 expression and regulatory cytokines TGF-β/IL-10 in co-cultured human CD4+ T cells, driving conventional CD4+ T cells into CD25+Foxp3+ Treg cells. Additionally, recombinant Gal-9 protein can transform TCR-activated CD4+ T cells into Foxp3+ Treg cells in a dose-dependent manner. Importantly, blocking Tim-3/Gal-9 ligations abrogates HCV-mediated Treg-cell induction by HCV-infected hepatocytes, suggesting that Tim-3/Gal-9 interactions may regulate human Foxp3+ Treg-cell development and function during HCV infection.
|
2 |
HCV-Infected Hepatocytes Drive CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> Regulatory T-cell Development Through the Tim-3/Gal-9 PathwayJi, Xiao J., Ma, Cheng J., Wang, Jia M., Wu, Xiao Y., Niki, Toshiro, Hirashima, Mitsumi, Moorman, Jonathan P., Yao, Zhi Q. 01 February 2013 (has links)
HCV is remarkable at disrupting human immunity to establish chronic infection. The accumulation of Treg cells at the site of infection and upregulation of inhibitory signaling pathways (such as T-cell Ig and mucin domain protein-3 (Tim-3) and galectin-9 (Gal-9)) play pivotal roles in suppressing antiviral effector T (Teff) cells that are essential for viral clearance. While Tim-3/Gal-9 interactions have been shown to negatively regulate Teff cells, their role in regulating Treg cells is poorly understood. To explore how Tim-3/Gal-9 interactions regulate HCV-mediated Treg-cell development, here we provide pilot data showing that HCV-infected human hepatocytes express higher levels of Gal-9 and TGF-β, and upregulate Tim-3 expression and regulatory cytokines TGF-β/IL-10 in co-cultured human CD4+ T cells, driving conventional CD4+ T cells into CD25+Foxp3+ Treg cells. Additionally, recombinant Gal-9 protein can transform TCR-activated CD4+ T cells into Foxp3+ Treg cells in a dose-dependent manner. Importantly, blocking Tim-3/Gal-9 ligations abrogates HCV-mediated Treg-cell induction by HCV-infected hepatocytes, suggesting that Tim-3/Gal-9 interactions may regulate human Foxp3+ Treg-cell development and function during HCV infection.
|
Page generated in 0.0193 seconds