• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • Tagged with
  • 25
  • 25
  • 25
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-Fluid Problems in Magnetohydrodynamics with Applications to Astrophysical Processes

Greenfield, Eric John January 2015 (has links)
I begin this study by presenting an overview of the theory of magnetohydrodynamics and the necessary conditions to justify the fluid treatment of a plasma. Upon establishing the fluid description of a plasma we move on to a discussion of magnetohydrodynamics in both the ideal and Hall regimes. This framework is then extended to include multiple plasmas in order to consider two problems of interest in the field of theoretical space physics. The first is a study on the evolution of a partially ionized plasma, a topic with many applications in space physics. A multi-fluid approach is necessary in this case to account for the motions of an ion fluid, electron fluid and neutral atom fluid; all of which are coupled to one another by collisions and/or electromagnetic forces. The results of this study have direct application towards an open question concerning the cascade of Kolmogorov-like turbulence in the interstellar plasma which we will discuss below. The second application of multi-fluid magnetohydrodynamics that we consider in this thesis concerns the amplification of magnetic field upstream of a collisionless, parallel shock. The relevant fluids here are the ions and electrons comprising the interstellar plasma and the galactic cosmic ray ions. Previous works predict that the streaming of cosmic rays lead to an instability resulting in significant amplification of the interstellar magnetic field at supernova blastwaves. This prediction is routinely invoked to explain the acceleration of galactic cosmic rays up to energies of 10¹⁵ eV. I will examine this phenomenon in detail using the multi-fluid framework outlined below. The purpose of this work is to first confirm the existence of an instability using a purely fluid approach with no additional approximations. If confirmed, I will determine the necessary conditions for it to operate.
2

Searching for gamma-ray signals form pulsars and periodic signals fromthe galactic gamma-ray sources

吳文謙, Ng, Man-him. January 1996 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
3

Searching for gamma-ray signals form pulsars and periodic signals from the galactic gamma-ray sources /

Ng, Man-him. January 1996 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1996. / Includes bibliographical references.
4

The relationship between galactic cosmic rays and solar wind

Ihongo, Grace Dominic January 2016 (has links)
Modeling the highly energetic particles known as galactic cosmic rays is a highly nontrivial task. This process may require numerical simulations of the complex processes occurring continuously in the heliosphere due to changes in solar wind reflecting the solar activity. However, if reasonable assumptions are employed, considering only the diffusion and convection processes, the above phenomenon can be reduced to a simplified scenario that can be modeled analytically. The variable solar wind may be responsible for solar modulation of galactic cosmic rays. The aforementioned, in addition to the postulated role of cosmic rays in climate change, has led to the following questions: what is the relationship between galactic cosmic rays and solar wind? What are the possible effects of solar wind on galactic cosmic ray flux? In an attempt to address these questions, we have modeled the transport of galactic cosmic rays in the heliosphere theoretically. Our model describes solar modulation and transport of galactic cosmic rays in the heliosphere mainly in terms of the size of the heliosphere, timedependent solar wind, and a uniform diffusion coefficient. Our results suggest that solar wind causes significant decrease in galactic cosmic ray flux at r ≈ 1AU. In further investigation, we examine a short-time variation of the calculated flux, and the result is reflected by exposing a negative correlation of −0.988 ± 0.001 between galactic cosmic ray flux variation and the solar wind variation at r ≈ 1AU. This outcome may suggest that the higher the solar wind, the lower the galactic cosmic ray flux and vice-versa. For completeness, we compared our results with available observational data that shows a good fit to the model. Thus, based on our model results, it may be possible to predict that galactic cosmic ray flux variation and solar wind variation at Earth are negatively correlated.
5

Neutron transport associated with the galactic cosmic ray cascade.

Singleterry, Robert Clay, Jr. January 1993 (has links)
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with B scRYNTRN, a computer program written by the High Energy Physics Division of N scASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. B scRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As N scASA Langley improves B scRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the F(N) method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs M scGSLAB and M scGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The E scNDF/B V database is used to generate the total and scattering cross sections for neutrons in aluminum. As an external verification, the results from M scGSLAB and M scGSEMI were compared to A scNISN/P scC, a routinely used neutron transport code, showing excellent agreement. In an application to an aluminum shield, the F(N) method seems to generate reasonable results.
6

Influence of sky conditions on carbon dioxide uptake by forests

Dengel, Sigrid January 2009 (has links)
Sky conditions play an important role in the Earth’s climate system, altering the solar radiation reaching the Earth’s surface and determining the fraction of incoming direct and diffuse radiation. Sky conditions dictate the radiation distribution inside plant canopies and also the carbon dioxide uptake by forests during the growing season. On the long term these diffuse conditions may have a positive influence on forest growth in Northern Britain during the last 50 years. We compared the quantity (amount) and quality (spectral distribution) of direct and diffuse radiation above, inside and below a forest stand under sunny, cloudy and overcast conditions in a thinned Sitka spruce [Picea sitchensis (Bong.) Carr.] forest (28 years, with an leaf area index (LAI) of around 5 m2m-2). Similar radiation properties (sky conditions) were used for analysis of light response and canopy conductance measurements in the same and also in a different spruce forest of the same species (33 years, LAI of around 7 m2 m-2) over the growing season 2008 in order to compare canopy activity under these conditions. In order to integrate short-term and longterm studies, we were looking at how far these conditions are influencing forest growth over several decades. To do so, we used freshly cut tree discs of Sitka spruce from a felled forest (planting year 1953) in southern Scotland and solar direct and diffuse radiation along with other meteorological data from the nearest meteorological station. Our analysis show that the amount and quality of solar radiation is distributed differently inside forest stands under various sky conditions, leading to an enhanced carbon dioxide uptake and canopy stomatal activity under diffuse cloudy and overcast conditions. Furthermore we demonstrated which factors have influenced diffuse radiation distribution over the past 50 years and how these are correlated with forest growth in southern Scotland.
7

A new continuum mapping procedure at HartRAO

Büchner, Sarah 19 June 2012 (has links)
A basket weaving technique for making radio continuum maps has been developed at the Hartebeesthoek Radio Astronomy Observatory (HartRAO). This data reduction technique significantly reduces scanning effects by using independent maps scanned in orthogonal directions. The observation and data analysis procedures that were developed are presented. The technique was used to map the supernova remnant MSH 15-52 at frequencies of 5000 MHz and 8500 MHz. The flux spectral index for this supernova remnant was found to be 0.83 ± 0.02 in this frequency range. Two regions (A and B) of the Galactic plane were observed at 8500 MHz with a resolution of 6'. Region A covered the 5°x5° area 47.5°< k 52.5°, Ibl < 2.5°, and region B was the 4.2°x3° area 320.4°< I <334.6°, Ibl < 1.5°. Far infrared observations at 60 !lm were used in conjunction with the radio maps to separate the thermal and non-thermal components of the radio emission. The technique can be used to map the Galactic plane at 8500 MHz using dual polarisation once the receiver at HartRAO has been upgraded. This would fulfil a need for a medium resolution, high frequency survey of the southern Galactic plane. / Adobe Acrobat Pro 9.4.6 / Adobe Acrobat 9.46 Paper Capture Plug-in
8

An Investigation of the Effectiveness of Polymer Based Materials for Radiation Shielding of Flight Vehicles

Driouche, Bouteina 11 August 2017 (has links)
The Earth’s upper atmosphere is suffused by radiation caused primarily by a bombardment of Cosmic Rays, as a result of which it is hazardous for human beings as well as sensitive electronic equipment on board flight vehicles. A series of ground based as well as airborne experiments were performed using Polylactic Acid (PLA), Acrylonitrile-Butadiene-Styrene (ABS) and High Impact Polystyrene (HIPS), in order to investigate the applicability of polymers that can meet today’s needs for lightweight, multifunctional, and cost efficiency in radiation shielding of electronic equipment. It was found that PLA at 8 mm thickness has an effectiveness of 66% against gamma radiation (i.e., it blocked 66% of the gamma radiation). Therefore, it was decided to proceed with a high altitude balloon experiment with an 8 mm thickness of PLA. The shield was demonstrated to be reasonably effective in attenuating radiation from cosmic rays.
9

Non-thermal Particle Acceleration and Emission from Relativistic Jets

Hao Zhang (15315109) 19 April 2023 (has links)
<p>Astrophysical jets are collimated streams of magnetized plasma launched from compact objects, such as neutron stars or black holes. These jets, powered by the accretion of surrounding gas onto the compact object, can accelerate particles to extreme energies and produce powerful radiation.</p> <p><br></p> <p>In this report, I investigate energy dissipation and particle acceleration in two key regions in jets: (i) external shocks which form where jets interact with ambient gas and (ii) internally in the jet where particles are likely to be energized through the process of magnetic reconnection.</p> <p><br></p> <p>First, I explore inverse Compton scatterings of electrons accelerated at the external shock as a candidate for the high energy emissions from gamma-ray burst afterglows. I consider two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton) and photon fields external to the shock (external Compton) from the star-forming region in the host galaxy. I develop an analytical model to predict the high-energy spectra from these blasts and reproduce the observed spectra and lightcurves of GRB~190114C. The model implies that inverse Compton can dominate the sub-TeV/TeV emission in this event.</p> <p><br></p> <p>Second, I study the particle acceleration mechanism of magnetic reconnection internally in astrophysical jets. I employ particle-in-cell (PIC) simulations of 3D relativistic magnetic reconnection. My analysis reveals a novel acceleration mechanism that only operates in 3D that results in faster particle acceleration. Unlike in 2D simulations where particles are trapped in the reconnected plasma and stop being accelerated, a fraction of particles in 3D can escape from this region (along the third direction) and be further accelerated. The escaped particles are characterized by a harder energy spectrum with a higher cutoff compared to those found in previous studies. Based on the PIC simulation findings, I build an analytical model for the particle kinetics, which divides particles into two groups --- one undergoing fast energization in the reconnection upstream region and the other residing in the reconnected plasma without energy change. The model predicts a power-law spectra for both groups of particles. PIC simulations reveal a universal magnetization-independent spectra with $dN/d\gamma\propto \gamma^{-2}$ for the overall particle population. The results demonstrate that relativistic reconnection in jets may be a promising mechanism for generating Ultra-High-energy Cosmic Rays. </p>
10

Cosmic ray backgrounds for dark matter indirect detection

Mertsch, Philipp January 2010 (has links)
The identification of the relic particles which presumably constitute cold dark matter is a key challenge for astroparticle physics. Indirect methods for their detection using high energy astro- physical probes such as cosmic rays have been much discussed. In particular, recent ‘excesses’ in cosmic ray electron and positron fluxes, as well as in microwave sky maps, have been claimed to be due to the annihilation or decay of dark matter. In this thesis, we argue however that these signals are plagued by irreducible astrophysical backgrounds and show how plausible con- ventional physics can mimic the alleged dark matter signals. In chapter 1, we review evidence of, and possible particle candidates for, cold dark matter, as well as our current understanding of galactic cosmic rays and the state-of-the-art in indirect detection. All other chapters contain original work, mainly based on the author’s journal publications. In particular, in chapter 2, we consider the possibility that the rise in the positron fraction observed by the PAMELA satellite is due to the production through (hadronic) cosmic ray spallation and subsequent acceleration of positrons, in the same sources as the primary cosmic rays. We present a new (unpublished) analytical estimate of the range of possible fluctuations in the high energy electron flux due to the discreteness of plausible cosmic ray sources such as supernova remnants. Fitting our result for the total electron-positron flux measured by the Fermi satellite allows us to fix the only free parameter of the model and make an independent prediction for the positron fraction. Our explanation relies on a large number of supernova remnants nearby which are accelerating hadronic cosmic rays. Turning the argument around, we find encouraging prospects for the observation of neutrinos from such sources in km^3-scale detectors such as IceCube. Chapter 3 presents a test of this model by considering similar effects expected for nuclear secondary-to-primary ratios such as B/C. A rise predicted above O(100)GeV/n would be an unique confirmation of our explanation for a rising positron fraction and rule out the dark matter explanation. In chapter 4, we review the assumptions made in the extraction of the `WMAP haze' which has also been claimed to be due to electrons and positrons from dark matter annihilation in the Galactic centre region. We argue that the energy-dependence of their diffusion means that the extraction of the haze through fitting to templates of low frequency diffuse galactic radio emission is unreliable. The systematic effects introduced by this can, under specific circumstances, reproduce the residual, suggesting that the ‘haze’ may be just an artefact of the template subtraction. We present a summary and thoughts about further work in the epilogue.

Page generated in 0.0926 seconds