• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The formation and structural investigation of galacturonides from a galactoglucomannan and a galactomannan.

Rogers, John K. 01 January 1968 (has links)
No description available.
2

Synthesis of AcGGM Polysaccharide Hydrogels

Maleki, Laleh January 2016 (has links)
Lignocellulosic biomass is believed to serve a prominent role in tomorrow’s sustainable energy and material development. Among the polysaccharide fractions of lignocellulosic biomass, the potential of hemicelluloses as a valuable material resource is increasingly recognized. Thanks to their hydrophilic structure, hemicelluloses are suitable substrates for hydrogel design. The work summarized in this thesis aims to develop feasible strategies for the conversion of O-acetyl galactoglucomannan (AcGGM), an ample hemicellulose in softwood, into hydrogels. Within this framework, four synthetic pathways targeting the formation of crosslinked hydrogel networks from pure or unrefined AcGGM fractions were developed.   Aqueous AcGGM-rich and lignin-containing side-stream process liquors of forest industry, known as softwood hydrolysates (SWHs) were formulated into highly swellable hydrogels by: i) allyl-functionalization of AcGGM chains of crude SWH to obtain a viable precursor for hydrogel synthesis via free-radical crosslinking, ii) directly incorporating unmodified SWH fractions into semi-interpenetrating polymer networks (semi-IPNs). SWH hydrogels and semi-IPNs were characterized with appreciable maximum swelling ratios of Qeq = 170 and Qeq = 225, respectively.   Rapid crosslinking of AcGGM through thiol-click chemistry was addressed by first imparting thiol functionality onto pure AcGGM chains in a one-pot procedure. The thiolated AcGGM proved to be a suitable substrate for the synthesis of hemicellulose hydrogels via thiol-ene and thiol Michael addition reactions. Finally, sequential full IPNs were developed by subjecting single network hydrogels of pure AcGGM to a second network formation. IPNs obtained through either free radical crosslinking or thiol-ene crosslinking exhibited higher shear storage moduli than their single network counterparts. / <p>QC 20161102</p>
3

Hemicellulose as barrier material

Jonas, Hartman January 2006 (has links)
<p>Polysaccharides constitute an important source of raw materials for the packaging industry today. Polysaccharides have good natural barrier properties which are necessary for packaging films. Cellulose is the forerunner among renewable polymers for such applications. Hemicelluloses represent a new interesting breed of barrier materials. We have chosen to work with the hemicellulose O-acetyl-galactoglucomannan (AcGGM). The high water solubility of this particular hemicellulose extracted from process waters is both an advantage and a limiting factor. However, through the right modification, the water sensitivity of AcGGM can be regulated.</p><p>This thesis presents four ways to modify AcGGM: (i) benzylation, (ii) plasma surface treatment followed by styrene addition, (iii) vapor-phase (VP) surface grafting with styrene, and (iv) lamination of an unmodified film with a benzylated material. The most important methods of analysis of the films produced include contact angle measurement, dynamic mechanical analysis under moisture scan, and oxygen gas permeability measurement.</p><p>It was found that unmodified AcGGM films have low oxygen permeability at intermediate relative humidity (50 % RH) and good dynamic mechanical properties over a wider humidity range. Films of benzylated material (BnGGM) exhibited a decrease in oxygen permeability at lower humidity but showed better tolerance to higher humidities and indicated better dynamic mechanical behavior than AcGGM films. Lamination proved to be the most promising technique of modification, combining the good gas barrier properties of AcGGM films with the moisture-insensitivity of the BnGGM films.</p>
4

Hemicellulose as barrier material

Jonas, Hartman January 2006 (has links)
Polysaccharides constitute an important source of raw materials for the packaging industry today. Polysaccharides have good natural barrier properties which are necessary for packaging films. Cellulose is the forerunner among renewable polymers for such applications. Hemicelluloses represent a new interesting breed of barrier materials. We have chosen to work with the hemicellulose O-acetyl-galactoglucomannan (AcGGM). The high water solubility of this particular hemicellulose extracted from process waters is both an advantage and a limiting factor. However, through the right modification, the water sensitivity of AcGGM can be regulated. This thesis presents four ways to modify AcGGM: (i) benzylation, (ii) plasma surface treatment followed by styrene addition, (iii) vapor-phase (VP) surface grafting with styrene, and (iv) lamination of an unmodified film with a benzylated material. The most important methods of analysis of the films produced include contact angle measurement, dynamic mechanical analysis under moisture scan, and oxygen gas permeability measurement. It was found that unmodified AcGGM films have low oxygen permeability at intermediate relative humidity (50 % RH) and good dynamic mechanical properties over a wider humidity range. Films of benzylated material (BnGGM) exhibited a decrease in oxygen permeability at lower humidity but showed better tolerance to higher humidities and indicated better dynamic mechanical behavior than AcGGM films. Lamination proved to be the most promising technique of modification, combining the good gas barrier properties of AcGGM films with the moisture-insensitivity of the BnGGM films. / QC 20101117

Page generated in 0.0413 seconds