• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Galerkin Approximations of General Delay Differential Equations with Multiple Discrete or Distributed Delays

Norton, Trevor Michael 29 June 2018 (has links)
Delay differential equations (DDEs) are often used to model systems with time-delayed effects, and they have found applications in fields such as climate dynamics, biosciences, engineering, and control theory. In contrast to ordinary differential equations (ODEs), the phase space associated even with a scalar DDE is infinite-dimensional. Oftentimes, it is desirable to have low-dimensional ODE systems that capture qualitative features as well as approximate certain quantitative aspects of the DDE dynamics. In this thesis, we present a Galerkin scheme for a broad class of DDEs and derive convergence results for this scheme. In contrast to other Galerkin schemes devised in the DDE literature, the main new ingredient here is the use of the so called Koornwinder polynomials, which are orthogonal polynomials under an inner product with a point mass. A main advantage of using such polynomials is that they live in the domain of the underlying linear operator, which arguably simplifies the related numerical treatments. The obtained results generalize a previous work to the case of DDEs with multiply delays in the linear terms, either discrete or distributed, or both. We also consider the more challenging case of discrete delays in the nonlinearity and obtain a convergence result by assuming additional assumptions about the Galerkin approximations of the linearized systems. / Master of Science / Delay differential equations (DDEs) are equations that are commonly used to model systems with time-delayed effects. DDEs have found applications in fields such as climate dynamics, biosciences, engineering, and control theory. However, the solutions to these equations can be dicult to approximate. In a previous paper, a method to approximate certain types of DDEs was described. In this thesis, it is shown that this method may also approximate more general types of DDEs.
2

Soluções fracas para um sistema de equações de Oberbeck-Boussinesq

Lima, Fabiana Goulart de January 2002 (has links)
Neste trabalho, utilizando o método espectral de Galerkin, provamos a existência de soluções fracas (quando a dimensão n é maior que 2) e existência e unicidade de soluções fracas (quando a dimensão é 2) para um sistema de equações diferenciais parciais que descrevem o movimento de um fluido quimicamente ativo em um domínio limitado em Rn, n 2≥2. / In this work, by using the spectral Galerkin method, we prove the existence of weak solutions (when the dimension n is great than 2) and existence and uniqueness of weak solutions (when the dimension is 2) for a system of partial differential equations that describes the motion of a chemical active fluid in a bounded domain in Rn, n≥2.
3

Soluções fracas para um sistema de equações de Oberbeck-Boussinesq

Lima, Fabiana Goulart de January 2002 (has links)
Neste trabalho, utilizando o método espectral de Galerkin, provamos a existência de soluções fracas (quando a dimensão n é maior que 2) e existência e unicidade de soluções fracas (quando a dimensão é 2) para um sistema de equações diferenciais parciais que descrevem o movimento de um fluido quimicamente ativo em um domínio limitado em Rn, n 2≥2. / In this work, by using the spectral Galerkin method, we prove the existence of weak solutions (when the dimension n is great than 2) and existence and uniqueness of weak solutions (when the dimension is 2) for a system of partial differential equations that describes the motion of a chemical active fluid in a bounded domain in Rn, n≥2.
4

Soluções fracas para um sistema de equações de Oberbeck-Boussinesq

Lima, Fabiana Goulart de January 2002 (has links)
Neste trabalho, utilizando o método espectral de Galerkin, provamos a existência de soluções fracas (quando a dimensão n é maior que 2) e existência e unicidade de soluções fracas (quando a dimensão é 2) para um sistema de equações diferenciais parciais que descrevem o movimento de um fluido quimicamente ativo em um domínio limitado em Rn, n 2≥2. / In this work, by using the spectral Galerkin method, we prove the existence of weak solutions (when the dimension n is great than 2) and existence and uniqueness of weak solutions (when the dimension is 2) for a system of partial differential equations that describes the motion of a chemical active fluid in a bounded domain in Rn, n≥2.

Page generated in 0.0809 seconds