• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origin and formation of the regular satellites around planets / Etudes des conditions de formation des satellites glacés de Jupiter dans le cadre de la mission JUICE

Ronnet, Thomas 01 October 2018 (has links)
Les travaux réalisés au cours de cette thèse s'intéressent à l'origine et à la formation des satellites naturels réguliers de Mars et Jupiter qui sont les cibles de futures missions d'exploration spatiale dédiées à leur caractérisation. Le cas controversé de l'origine de Phobos et Deimos, les lunes de Mars, est adressé et il est montré que leur formation à la suite d'un impact géant permettrait de réconcilier leurs propriétés orbitales et physiques. Concernant les satellites galiléens orbitant Jupiter, il est montré que dans le contexte classiquement utilisé de leur formation, la croissance des lunes a certainement procédé par l'accrétion de grains de poussières, un processus appelé "pebble accretion", plutôt que par celle de corps plus grands comme il est typiquement considéré. Des propriétés intéressantes, ainsi que d'autres plus problématiques, de la croissance des lunes galiléennes par "pebble accretion" sont dérivées. Dans un second temps, le transport de solides nécessaires à l'assemblage des lunes galiléennes dans le disque circum-jovien est étudié dans le contexte des récentes théories de formation des planètes géantes. Nous montrons que la vision classique selon laquelle le gaz accrété par Jupiter transporte assez de solides pour former ses lunes est probablement erronée. Il est proposé que, aidée par la formation de Saturne, Jupiter a pu capturer dans son disque assez de planétésimaux pour assembler les satellites galiléens. Contrairement aux précédents scénarios, le cadre proposé prédit que des analogues aux satellites galiléens ne se forment pas autour de toutes les planètes géantes / This thesis aims at better understanding the origin and formation of the martian moons, Phobos and Deimos, and the major jovian satellites known as the galilean moons, each of these systems being the target of future space exploration missions dedicated to their characterization. We address the puzzling origin of Phobos and Deimos and show that their formation following a giant impact could allow to account for both their orbital and physical properties. As regards the galilean moons, we argue that their growth would likely proceed through the accretion of small dust grains, a process known as pebble accretion, rather than through the accretion of larger satellitesimals within the typical framework assumed for their formation. We derive some interesting properties as well as some drawbacks of pebble accretion in the galilean system. Then, the delivery of solid material from the protoplanetary disk to the circum-jovian disk is investigated in light of recent developments of the theory of giant planets' formation. It is shown that the classic view that the gas accreted by Jupiter transports enough solids to build many galilean-like satellites is likely to be erroneous and some other mechanism must have taken place to account for the presence of the massive galilean moons. It is proposed that, with the help of Saturn's formation, Jupiter could have captured within its disk enough planetesimals on initially heliocentric orbits to build the galilean moons. Unlike previous scenarios, the proposed framework predicts that the presence of galilean analogues would not be ubiquitous around extrasolar giant planets
2

L'expérience MAJIS : développement d'un imageur spectral pour les lunes de Jupiter / The MAJIS experiment : development of a hyperspectral imager for the Galilean moons

Guiot, Pierre 28 October 2019 (has links)
La mission JUICE de l’ESA sera la troisième mission d’exploration entièrement dédiée au système de Jupiter, et la première à se concentrer sur les lunes Galiléennes glacées susceptibles d’abriter des océans d’eau liquide. Prévue pour un lancement en 2022 et une insertion en orbite jovienne fin 2029, la sonde emportera parmi ses 11 instruments le spectro-imageur MAJIS. Les données d’un tel instrument comprennent une image à haute résolution spatiale de la zone étudiée et un spectre pour chacun des pixels de cette image. Ce spectre, dans la gamme allant de 0.5 à 5.5 µm, permet d’obtenir des informations physico-chimiques sur le contenu du pixel concerné. Le laboratoire où j’ai effectué mon travail de thèse, l’IAS, s’est vu confier la responsabilité de la réalisation de MAJIS. Dans ce contexte, l’objectif de mon travail était de contribuer à la définition et à l’implémentation de l’étalonnage de l’instrument : j’ai pour cela dû comprendre d’abord ses objectifs scientifiques et les exigences instrumentales qui en découlent, et maîtriser les caractéristiques des sous-systèmes qui composent MAJIS. J’ai tout d’abord traité les données de l’imageur intégral de champ de SPHERE, un instrument du VLT, qui avait observé la lune Galiléenne volcanique Io en 2014. Bien que ce satellite soit un objectif mineur de la mission JUICE, j’ai dû me confronter au fonctionnement de l’instrument pour en réduire les données et le traitement des spectres a requis le développement d’un modèle photométrique d’observation de la surface que j’ai pu confronter à la réalité et à d’autres études. L’identification de nombreux biais systématiques dans ces données et la quantification de ses limites de détection spatiales et spectrales m’ont permis de souligner l’aspect critique de la phase d’étalonnage de MAJIS pour que ses données soient exploitables. Avant cette étape toutefois, la connaissance des sous-systèmes qui vont constituer l’instrument est elle aussi nécessaire car certains de leurs paramètres conditionneront le déroulement de cet étalonnage et ils ne pourront pas tous être mesurés à cette occasion. J’ai donc caractérisé, à l’aide des bancs optiques dédiés à l’IAS, le plan focal de l’instrument et surtout son détecteur CMOS infrarouge de type HgCdTe. J’ai pu mesurer ses caractéristiques les plus courantes, comme son courant d’obscurité, sa profondeur de puits, son efficacité quantique, son éventuelle persistance, son bruit de lecture et la linéarité de sa réponse. Dans le cas d’une mission vers Jupiter, un autre aspect des performances du détecteur doit être étudié en détail : sa résistance aux radiations, particulièrement intenses dans la magnétosphère jovienne. J’ai pu effectuer une série de tests sur des détecteurs témoins avec des sources d’électrons, de protons et de photons de hautes énergies, qui m’ont permis de montrer la très bonne résistance du plan focal aux dégâts permanents. Ces données ont aussi permis de caractériser expérimentalement le signal transient induit par un bombardement aux électrons, ce qui m’a permis de valider l’approche de filtrage de ce signal qui sera implémentée en vol. C’est enfin grâce aux résultats de ces trois approches et au développement d’un modèle photométrique complet de l’instrument et de son dispositif d’étalonnage, que j’ai pu discuter l’architecture de ce dernier et proposer des séquences de mesure pour la campagne d’étalonnage. J’ai donc travaillé avec les ingénieurs du laboratoire et des industriels pour réaliser ce dispositif d’étalonnage, sélectionner les sources de lumière qui permettront la mesure de la réponse spatiale, spectrale et radiométrique de l’instrument nécessaires à l’interprétation de ses données au cours de la mission. Au moment de la rédaction de ce manuscrit, le banc d’étalonnage était en cours d’assemblage et j’ai donc pu conclure ce travail par la confrontation de mon modèle aux résultats expérimentaux de validation de certaines voies optiques du dispositif d’étalonnage. / The ESA JUICE mission will only be the third mission fully dedicated to exploring the Jupiter system, and the first with a specific focus on the icy Galilean moons that may harbor oceans of liquid water. Planned for launch in 2022 for a Jovian orbit insertion in late 2029, the probe will carry MAJIS among its 11 instruments, an imaging spectrometer operating from the visible to medium infrared wavelengths. This type of instrument provides very comprehensive data of the observed surface or atmosphere/exosphere: its high spatial resolution capability provides geomorphological information, such as the presence of craters or faults that mark the age and activity of the terrain, while for each pixel a spectrum is acquired. This spectrum, ranging from 0.5 to 5.5 $mu$m, yields physical and chemical information on the region of interest, thus placed in its geomorphic context. The Institut d'Astrophysique Spatiale, my PhD host laboratory, has a legacy of development of such instruments, prominently OMEGA aboard the 2003 Mars Express probe, of which MAJIS is the latest and current project. In this context, my work’s aim was to contribute to the definition and implementation of the instrument’s calibration: to achieve that I first had to understand its scientific objectives and the resulting instrumental requirements, as well as mastering the characteristics of MAJIS subsystems. As part of that process, I analyzed recent data of Io acquired with SPHERE, an integral field spectrometer on the VLT, which possesses similarities with the expected data products of MAJIS. Though this satellite is a minor objective of the JUICE mission, I had to understand the instrument itself in order to reduce its data and the spectra analysis required the development of a photometric model of a surface observation which I confronted to the reality and to previous studies. The identification of many systematic biases in these data and the quantification of its spatial and spectral detection limits allowed me to highlight the critical aspect in the upcoming calibration phase of MAJIS in order to get interpretable in-flight data. To reach this goal the knowledge of the subsystems of the instrument is also necessary because their behavior will condition the calibration scenario and all their parameters will not be measured again on this occasion. I have therefore characterized, using dedicated optical benches, the focal plane of the instrument and especially its HgCdTe CMOS infrared detector. I was able to measure its most common characteristics, such as its dark current, full-well capacity, quantum efficiency, persistence and readout noise. The knowledge of QE and full-well depth was incorporated into an end-to-end radiometric model of MAJIS, which I fed with the spectral radiance of different scientific targets, including modeled ionian surface flows. In turn, this allowed me to select sources and optical solutions suitable for calibration. Due to the intense radiation levels in the Jovian magnetosphere, the detector’s resilience to radiations also needed to be studied. I was able to perform three test campaigns on control detectors with sources of electrons, protons and high energy photons, which allowed me to show the overall very good resilience of the focal plane to permanent damages and to validate the foreseen transient effects reduction algorithms. These three approaches required that I develop a complete photometric model of the instrument and of its calibration setup which I used to discuss its design and submit test sequences for the calibration campaign. I have worked with our laboratory engineers and industrials to design then build the calibration setup with the light sources that will allow measurement of the spatial, spectral and radiometric responses of the instrument, required to interpret its data during the mission.
3

Transfer design methodology between neighborhoods of planetary moons in the circular restricted three-body problem

David Canales Garcia (11812925) 19 December 2021 (has links)
<div>There is an increasing interest in future space missions devoted to the exploration of key moons in the Solar system. These many different missions may involve libration point orbits as well as trajectories that satisfy different endgames in the vicinities of the moons. To this end, an efficient design strategy to produce low-energy transfers between the vicinities of adjacent moons of a planetary system is introduced that leverages the dynamics in these multi-body systems. Such a design strategy is denoted as the moon-to-moon analytical transfer (MMAT) method. It consists of a general methodology for transfer design between the vicinities of the moons in any given system within the context of the circular restricted three-body problem, useful regardless of the orbital planes in which the moons reside. A simplified model enables analytical constraints to efficiently determine the feasibility of a transfer between two different moons moving in the vicinity of a common planet. Subsequently, the strategy builds moon-to-moon transfers based on invariant manifold and transit orbits exploiting some analytical techniques. The strategy is applicable for direct as well as indirect transfers that satisfy the analytical constraints. The transition of the transfers into higher-fidelity ephemeris models confirms the validity of the MMAT method as a fast tool to provide possible transfer options between two consecutive moons. </div><div> </div><div>The current work includes sample applications of transfers between different orbits and planetary systems. The method is efficient and identifies optimal solutions. However, for certain orbital geometries, the direct transfer cannot be constructed because the invariant manifolds do not intersect (due to their mutual inclination, distance, and/or orbital phase). To overcome this difficulty, specific strategies are proposed that introduce intermediate Keplerian arcs and additional impulsive maneuvers to bridge the gaps between trajectories that connect any two moons. The updated techniques are based on the same analytical methods as the original MMAT concept. Therefore, they preserve the optimality of the previous methodology. The basic strategy and the significant additions are demonstrated through a number of applications for transfer scenarios of different types in the Galilean, Uranian, Saturnian and Martian systems. Results are compared with the traditional Lambert arcs. The propellant and time-performance for the transfers are also illustrated and discussed. As far as the exploration of Phobos and Deimos is concerned, a specific design framework that generates transfer trajectories between the Martian moons while leveraging resonant orbits is also introduced. Mars-Deimos resonant orbits that offer repeated flybys of Deimos and arrive at Mars-Phobos libration point orbits are investigated, and a nominal mission scenario with transfer trajectories connecting the two is presented. The MMAT method is used to select the appropriate resonant orbits, and the associated impulsive transfer costs are analyzed. The trajectory concepts are also validated in a higher-fidelity ephemeris model.</div><div> </div><div>Finally, an efficient and general design strategy for transfers between planetary moons that fulfill specific requirements is also included. In particular, the strategy leverages Finite-Time Lyapunov Exponent (FTLE) maps within the context of the MMAT scheme. Incorporating these two techniques enables direct transfers between moons that offer a wide variety of trajectory patterns and endgames designed in the circular restricted three-body problem, such as temporary captures, transits, takeoffs and landings. The technique is applicable to several mission scenarios. Additionally, an efficient strategy that aids in the design of tour missions that involve impulsive transfers between three moons located in their true orbital planes is also included. The result is a computationally efficient technique that allows three-moon tours designed within the context of the circular restricted three-body problem. The method is demonstrated for a Ganymede->Europa->Io tour.</div>

Page generated in 0.0388 seconds