Spelling suggestions: "subject:"gallium alloys."" "subject:"allium alloys.""
11 |
An investigation of point defects in solidsHodby, Jonathan W. January 1965 (has links)
No description available.
|
12 |
Efeito das adições de boro na magnetostricção de ligas policristalinas dos sistemas Fe-Al e Fe-Ga / Effect of boron additions on the magnetostriction of polycrystalline alloys of the Fe-Al and Fe-Ga systemsSantos, Claudio Teodoro dos 12 March 2013 (has links)
Os materiais magnetostrictivos apresentam deformação elástica quando são submetidos a um campo magnético ou mudança das propriedades magnéticas quando são submetidos a uma tensão mecânica, e por isso são de grande interesse para aplicações em atuadores, sensores e aproveitadores de energia. Entretanto, os melhores materiais magnetostrictivos disponíveis são caros e frágeis. Nos últimos anos foi descoberta uma nova classe de materiais magnetostrictivos que superam este problema, a classe das ligas Fe-Ga e Fe-Al, que possuem a rara combinação de moderada magnetostricção, boas propriedades mecânicas e baixo custo associado. Atualmente, as pesquisas têm buscado meios de melhorar a magnetostricção destas ligas, tanto por adições ternárias de outros átomos, como pela utilização de diferentes métodos de fabricação, tratamentos térmicos ou processamentos mecânicos. No presente trabalho foi avaliado o efeito das adições de B e do processo de solidificação rápida na magnetostricção e microestrutura das ligas Fe-Al e Fe-Ga. Para isso, ligas policristalinas de composição nominal (Fe80Al20)1-0,01yBy, (Fe80Ga20)1-0,01yBy e (Fe72Ga28)1-0,01yBy, com y = 0; 0,5; 1; 1,5 e 2% at., foram produzidas por fusão a arco e pela técnica de solidificação rápida \"splat cooling\". A caracterização microestrutural das amostras foi realizada no MEV/EDS e DRX. A magnetostricção foi medida com campo magnético de 0 a ±2 T em 4,2, 77 e 300 K, por dilatometria de capacitância. As adições de B ocasionaram a precipitação de Fe2B nos contornos de grão da fase A2 e/ou D03 das ligas Fe-Al e Fe-Ga, resultando na redução do tamanho de grão e formação de cristais dendríticos. As ligas Fe80Al20 apresentaram um valor máximo de magnetostricção de 74 ppm com a adição de 2% at. de B. Já as ligas Fe80Ga20 e Fe72Ga28 apresentaram um máximo com a adição de 1% at. de B, sendo de 81 ppm e 143 ppm, respectivamente. Conclui-se que estas adições de B tiveram um efeito benéfico na magnetostricção das ligas Fe-Al e Fe-Ga como-solidificadas, uma vez que chegaram a ocasionar um aumento de até 100% desta propriedade em relação à liga sem B. Por outro lado, a solidificação rápida não teve efeito sobre a magnetostricção das ligas Fe-Al-B. / Magnetostrictive materials exhibit elastic deformation when subjected to a magnetic field or changing in magnetic properties when subjected to mechanical stress, so they are of great interest for applications in actuators, sensors and energy harvesters. However, the best available magnetostrictive materials are expensive and fragile. In the last years has been discovered a new class of magnetostrictive material which overcome this problem, the class of the Fe-Ga and Fe-Al alloys, which have the unusual combination of moderate magnetostriction, good mechanical properties and low associated cost. Currently, research has searched ways to improve the magnetostriction of these alloys, both for ternary additions of other atoms or by using different methods of preparation, heat treatment or mechanical processing. In the present study, we evaluated the effect of B additions and rapid solidification process on the microstructure and magnetostriction of Fe- Al and Fe-Ga alloys. For this purpose, polycrystalline alloys of nominal composition (Fe80Al20)1-0.01yBy, (Fe80Ga20)1-0.01yBy and (Fe72Ga28)1-0.01yBy, with y = 0, 0.5, 1, 1.5 e 2 at.% were produced by arc melting and splat cooling rapid solidification technique. Microstructural characterization of the samples was performed by SEM/EDS and XRD. The magnetostriction was measured under magnetic field of 0 to ±2 T, at 4.2, 77 and 300 K, by capacitance dilatometry. The B additions caused precipitation of Fe2B at the grain boundaries of A2 and/or D03 phase of Fe-Al and Fe-Ga alloys, resulting in a reduction of the grain size and formation of dendritic crystals. The Fe80Al20 alloys showed a maximum magnetostriction of 74 ppm with the addition of 2 at.% B. And, the Fe80Ga20 and Fe72Ga28 alloys showed a peak with the addition of 1 at.% B, of 81 ppm and 143 ppm, respectively. We concluded that these B additions had a beneficial effect on the magnetostriction of Fe- Al and Fe-Ga as-cast alloys, since they caused an increase up to 100% of this property in relation to the alloy without B. On the other hand, the rapid solidification had no the same effect on the magnetostriction of Fe-Al-B alloys.
|
13 |
Efeito das adições de boro na magnetostricção de ligas policristalinas dos sistemas Fe-Al e Fe-Ga / Effect of boron additions on the magnetostriction of polycrystalline alloys of the Fe-Al and Fe-Ga systemsClaudio Teodoro dos Santos 12 March 2013 (has links)
Os materiais magnetostrictivos apresentam deformação elástica quando são submetidos a um campo magnético ou mudança das propriedades magnéticas quando são submetidos a uma tensão mecânica, e por isso são de grande interesse para aplicações em atuadores, sensores e aproveitadores de energia. Entretanto, os melhores materiais magnetostrictivos disponíveis são caros e frágeis. Nos últimos anos foi descoberta uma nova classe de materiais magnetostrictivos que superam este problema, a classe das ligas Fe-Ga e Fe-Al, que possuem a rara combinação de moderada magnetostricção, boas propriedades mecânicas e baixo custo associado. Atualmente, as pesquisas têm buscado meios de melhorar a magnetostricção destas ligas, tanto por adições ternárias de outros átomos, como pela utilização de diferentes métodos de fabricação, tratamentos térmicos ou processamentos mecânicos. No presente trabalho foi avaliado o efeito das adições de B e do processo de solidificação rápida na magnetostricção e microestrutura das ligas Fe-Al e Fe-Ga. Para isso, ligas policristalinas de composição nominal (Fe80Al20)1-0,01yBy, (Fe80Ga20)1-0,01yBy e (Fe72Ga28)1-0,01yBy, com y = 0; 0,5; 1; 1,5 e 2% at., foram produzidas por fusão a arco e pela técnica de solidificação rápida \"splat cooling\". A caracterização microestrutural das amostras foi realizada no MEV/EDS e DRX. A magnetostricção foi medida com campo magnético de 0 a ±2 T em 4,2, 77 e 300 K, por dilatometria de capacitância. As adições de B ocasionaram a precipitação de Fe2B nos contornos de grão da fase A2 e/ou D03 das ligas Fe-Al e Fe-Ga, resultando na redução do tamanho de grão e formação de cristais dendríticos. As ligas Fe80Al20 apresentaram um valor máximo de magnetostricção de 74 ppm com a adição de 2% at. de B. Já as ligas Fe80Ga20 e Fe72Ga28 apresentaram um máximo com a adição de 1% at. de B, sendo de 81 ppm e 143 ppm, respectivamente. Conclui-se que estas adições de B tiveram um efeito benéfico na magnetostricção das ligas Fe-Al e Fe-Ga como-solidificadas, uma vez que chegaram a ocasionar um aumento de até 100% desta propriedade em relação à liga sem B. Por outro lado, a solidificação rápida não teve efeito sobre a magnetostricção das ligas Fe-Al-B. / Magnetostrictive materials exhibit elastic deformation when subjected to a magnetic field or changing in magnetic properties when subjected to mechanical stress, so they are of great interest for applications in actuators, sensors and energy harvesters. However, the best available magnetostrictive materials are expensive and fragile. In the last years has been discovered a new class of magnetostrictive material which overcome this problem, the class of the Fe-Ga and Fe-Al alloys, which have the unusual combination of moderate magnetostriction, good mechanical properties and low associated cost. Currently, research has searched ways to improve the magnetostriction of these alloys, both for ternary additions of other atoms or by using different methods of preparation, heat treatment or mechanical processing. In the present study, we evaluated the effect of B additions and rapid solidification process on the microstructure and magnetostriction of Fe- Al and Fe-Ga alloys. For this purpose, polycrystalline alloys of nominal composition (Fe80Al20)1-0.01yBy, (Fe80Ga20)1-0.01yBy and (Fe72Ga28)1-0.01yBy, with y = 0, 0.5, 1, 1.5 e 2 at.% were produced by arc melting and splat cooling rapid solidification technique. Microstructural characterization of the samples was performed by SEM/EDS and XRD. The magnetostriction was measured under magnetic field of 0 to ±2 T, at 4.2, 77 and 300 K, by capacitance dilatometry. The B additions caused precipitation of Fe2B at the grain boundaries of A2 and/or D03 phase of Fe-Al and Fe-Ga alloys, resulting in a reduction of the grain size and formation of dendritic crystals. The Fe80Al20 alloys showed a maximum magnetostriction of 74 ppm with the addition of 2 at.% B. And, the Fe80Ga20 and Fe72Ga28 alloys showed a peak with the addition of 1 at.% B, of 81 ppm and 143 ppm, respectively. We concluded that these B additions had a beneficial effect on the magnetostriction of Fe- Al and Fe-Ga as-cast alloys, since they caused an increase up to 100% of this property in relation to the alloy without B. On the other hand, the rapid solidification had no the same effect on the magnetostriction of Fe-Al-B alloys.
|
14 |
Cathodoluminescence spectroscopy studies of aluminum gallium nitride and silicon device structures as a function of irradiation and processingWhite, Brad Derek, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 191-206).
|
15 |
An Investigation On The Effect Of Structural And Microstructural Attributes On Magnetostriction Of Tb-Dy-Fe And Fe-Ga AlloysPalit, Mithun 07 1900 (has links) (PDF)
Giant magnetostrictive RFe2 type (R represents rare earths) intermetallics form an important class of magnetic materials keeping in view of their potential applications as sensors and/ or actuators. In this thesis, one such mixed rare earth compound (Tb,Dy)Fe2 has been chosen for investigations. Being a technologically important material system, several investigations concerning physical and magnetic properties of the material and effect of processing parameters on magnetic properties have been reported in the available literature. However, existing literature does not provide a clear insight into some important aspects such as phase equilibria, evolution of texture and microstructure of directionally solidified Tb-Dy-Fe alloys. Therefore, the present work was undertaken to bring out tangible process-structure-property correlations with an emphasis to clarify the grey areas in the available literature.
The investigation on the nature of ternary phase equilibria of Tb-Dy-Fe was taken up with an aim to understand the effect of Tb/Dy ratio on phase equilibria and magnetic properties of TbxDy1-xFe1.95 (x=0-1) alloys. Microstructural and micro-chemical analysis along with study of lattice parameter has been used to predict the nature of phase equilibria and the deviation from the assumed pseudo-binary behaviour. Further, from the microstructural investigations and study of lattice parameter and Curie temperature, a schematic sketch of a section of the ternary diagram, where (Tb,Dy) / Fe =1.95, was formulated and presented.
Directional solidification technique is the most widely adopted method for processing the (Tb,Dy)Fe2, to impart grain orientation for practical applications. Therefore, it was aimed in the present study to understand the evolution of texture and microstructure in directionally solidified Tb0.3Dy0.7Fe1.95 alloy by modified Bridgman and zone melting techniques. The alloy was directionally solidified by modified Bridgman technique with a series of growth rates 5 - 100 cm/h, at a constant temperature gradient of 150oC/ cm. Microstructural investigation revealed formation of island banding at lower growth rate and peritectic coupled growth at higher growth rates. The texture study indicated a transition of growth texture from <113> to <110> and finally to <112> with increase of growth rate. A mechanism based on atomic attachment kinetics is proposed to explain the orientation selection with growth rate. The texture and microstructure have been correlated with magnetostriction and static strain co-efficient (dλ/dH) of the Bridgman solidified alloys.
The solidification morphology observed in Bridgman solidified samples was found to be mostly plane front. Therefore, in order to understand the microstructure and texture evolution in cellular/ dendritic regime, directional solidification of Tb0.3Dy0.7Fe1.95 was attempted by zone melting technique with a lesser temperature gradient of 100oC/cm. A detailed texture study indicated a transition in preferred growth direction from <110> to <112> with increase of growth rate. In this case of cellular/ dendritic growth regime, a mechanism based on atomic attachment kinetics has been proposed and the preferred morphologies of the solid-liquid interface for <110> and <112> growth have been modelled. The modelled interfaces have been correlated to the shape of cell/ dendrite cross-section observed for the growth rates adopted in this study.
Apart from the investigation carried out on the (Tb,Dy)Fe2 alloys, attempts have been made to understand the role of microstructure, especially the ordered phases on the magnetostriction of an emerging magnetostrictive material Fe-Ga. A series of alloy compositions of Fe-x at % Ga (x=17, 20, 23 and 25) were prepared and subjected to different thermal treatments and characterized for microstructural features and magnetostriction. Microstructure investigation of slow cooled, quenched and quenched + aged alloys reveals formation of ordered DO3 phase from disordered A2 phase by first order transformation in 17 and 20 at% Ga alloys, whereas for 23 and 25 at% alloys, the transformation takes place by continuous ordering. It could be observed that large magnetostriction arises owing to the presence of disordered A2 phase or ordered DO3 phase alone. The magnetostriction however decreases substantially when these two phases are co-existing.
|
16 |
A study of gamma-radiation-induced effects in gallium nitride based devicesUmana-Membreno, Gilberto A January 2006 (has links)
[Truncated abstract] Over the past decade, the group III-nitride semiconducting compounds (GaN, AlN, InN, and their alloys) have attracted tremendous research efforts due to their unique electronic and optical properties. Their low thermal carrier generation rates and large breakdown fields make them attractive for the development of robust electronic devices capable of reliable operation in extreme conditions, i.e. at high power/voltage levels, high temperatures and in radiation environments. For device applications in radiation environments, such as space electronics, GaN-based devices are expected to manifest superior radiation hardness and reliability without the need for cumber- some and expensive cooling systems and/or radiation shielding. The principle aim of this Thesis is to ascertain the level of susceptibility of current GaN-based elec- tron devices to radiation-induced degradation, by undertaking a detailed study of 60Co gamma-irradiation-induced defects and defect-related effects on the electrical characteristics of n-type GaN-based materials and devices . . . While the irradiation-induced effects on device threshold voltage could be regarded as relatively benign (taking into account that the irradiation levels employed in this study are equivalent to more than 60 years exposure at the average ionising dose rate levels present in space missions), the observed device instabilities and the degradation of gate current characteristics are deleterious effects which will have a significant impact on the performance of AlGaN/GaN HEMTs operating in radiation environments at low temperatures, a combination of conditions which are found in spaceborne electronic systems.
|
Page generated in 0.0376 seconds