• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetics and GaN for Integrated CMOS Voltage Regulators

Aklimi, Eyal January 2016 (has links)
The increased use of DC-consuming electronics in many applications relevant to everyday life, necessitates significant improvements to power conversion and distribution methodologies. The surge in mobile electronics created a new power application space where high efficiency, size, and reduced complexity are critical, and at the same time, many computational tasks are relegated to centralized cloud computing centers, which consume significant amounts of energy. In both those application spaces, conversion and distribution efficiency improvements of even a few-% proves to be more and more challenging. A lot of research and development efforts target each source of loss, in an attempt to improve power electronics such that it serves the advances in other fields of electronics. Non-isolated DC-DC converters are essential in every electronics system, and improvements to efficiency, volume, weight and cost are of utmost interest. In particular, increasing the operation frequency and the conversion ratio of such converters serves the purposes of reducing the number or required conversion steps, reducing converter size, and increasing efficiency. The aforementioned improvements can be achieved by using superior technologies for the components of the converter, and by implementing higher level of integration than most present-day converters exhibit. In this work, Gallium Nitride (GaN) high electron mobility transistors (HEMT) are utilized as switches in a half-bridge buck converter topology, in conjunction with fine-line 180nm complementary metal oxide semiconductor (CMOS) driver circuitry. The circuits are integrated through a face-to-face bonding technique which results in significant reduction in interconnects parasitics and allows faster, more efficient operation. This work shows that the use of GaN transistors for the converter gives an efficiency headroom that allow pairing converters with state-of-the-art thin-film inductors with magnetic material, a task that is currently usually relegated to air-core inductors. In addition, a new "core-clad" structure for thin-film magnetic integrated inductors is presented for the use with fully integrated voltage regulators (IVRs). The core-clad topology combines aspects from the two popular inductor topologies (solenoid and cladded) to achieve higher inductance density and improved high frequency performance.
2

A study of gamma-radiation-induced effects in gallium nitride based devices

Umana-Membreno, Gilberto A January 2006 (has links)
[Truncated abstract] Over the past decade, the group III-nitride semiconducting compounds (GaN, AlN, InN, and their alloys) have attracted tremendous research efforts due to their unique electronic and optical properties. Their low thermal carrier generation rates and large breakdown fields make them attractive for the development of robust electronic devices capable of reliable operation in extreme conditions, i.e. at high power/voltage levels, high temperatures and in radiation environments. For device applications in radiation environments, such as space electronics, GaN-based devices are expected to manifest superior radiation hardness and reliability without the need for cumber- some and expensive cooling systems and/or radiation shielding. The principle aim of this Thesis is to ascertain the level of susceptibility of current GaN-based elec- tron devices to radiation-induced degradation, by undertaking a detailed study of 60Co gamma-irradiation-induced defects and defect-related effects on the electrical characteristics of n-type GaN-based materials and devices . . . While the irradiation-induced effects on device threshold voltage could be regarded as relatively benign (taking into account that the irradiation levels employed in this study are equivalent to more than 60 years exposure at the average ionising dose rate levels present in space missions), the observed device instabilities and the degradation of gate current characteristics are deleterious effects which will have a significant impact on the performance of AlGaN/GaN HEMTs operating in radiation environments at low temperatures, a combination of conditions which are found in spaceborne electronic systems.

Page generated in 0.1099 seconds