Spelling suggestions: "subject:"samma yay bursts"" "subject:"samma yay hursts""
11 |
A study of the optical afterglows of gamma-ray burstsTam, Pak-hin. January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
|
12 |
Simulation model for the time delay and broadening of gamma raybursts陳浩然, Chan, Ho-yin. January 1995 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
|
13 |
The study of quasi-periodic oscillations from soft gamma repeaters /Kettner, Joanne. January 2007 (has links)
Hyperflares from Soft Gamma Repeaters have revealed quasi-periodic oscillations, suggested to be torsional modes of the neutron star crust produced during starquakes. We study how a magnetic field affects these modes. We make a plane-parallel model of the neutron star crust with a vertical and non-vertical field and solve for the eigenvalues and eigenfunctions. In the vertical field case we find a discrete set of modes comparable to the observed frequencies giving evidence for this theory. We find that the lower order modes do not depend on B while the higher order modes do when the field strength is low or extremely high. We make a simple analytic model of a non-vertical field in a closed box representing the neutron star crust. The mode spectrum in this model is continuous rather than discrete, raising the puzzle of why only specific modes are excited during the hyperflare.
|
14 |
Short gamma-ray bursts resulting from phase-induced collapse of neutron starsTian, Xiaolei. January 2008 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Includes bibliographical references (leaf 55-58) Also available in print.
|
15 |
Cosmic explosions : the beasts and their lair : thesis /Berger, Edo January 2004 (has links) (PDF)
Thesis (Ph. D.)--California Institute of Technology, 2004. / VLA and VLBA observations.
|
16 |
A search for periodic neutrino signals and gamma-ray burst neutrinos with the Sudbury Neutrino ObservatoryTsang, Ka-vang., 曾嘉宏. January 2005 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
|
17 |
Photospheric emission in gamma ray bursts : Analysis and interpretation of observations made by the Fermi gamma ray space telescopeIyyani, Shabnam January 2015 (has links)
The large flashes of radiation that are observed in GRBs are generally believed to arise in a relativistic jetted outflow. This thesis addresses the question of how and where in the jet this radiation is produced. It further explores the jet properties that can be inferred from the observations made by the Fermi GST that regularly observes GRBs in the range 8 keV - 300 GeV. In my analysis I focus on the observational effects of the emission from the jet photosphere. I show that the photosphere has an important role in shaping the observed radiation spectrum and that its manifestations can significantly vary between bursts. For bursts in which the photospheric emission component can be identified, the dynamics of the flow can be explored by determining the jet Lorentz factor and the position of the jet nozzle. I also develop the theory of how to derive the properties of the outflow for general cases. The spectral analysis of the strong burst GRB110721A reveals a two-peaked spectrum, with the peaks evolving differently. I conclude that three main flow quantities can describe the observed spectral behaviour in bursts: the luminosity, the Lorentz factor, and the nozzle radius. While the photosphere can appear like a pure blackbody it can also be substantially broadened, due to dissipation of the jet energy below the photosphere. I show that Comptonisation of the blackbody can shape the observed spectra and describe its evolution. In particular this model can very well explain GRB110920A which has two prominent breaks in its spectra. Alternative models including synchrotron emission leads to severe physical constraints, such as the need for very high electron Lorentz factors, which are not expected in internal shocks. Even though different manifestations of the photospheric emission can explain the data, and lead to ambiguous interpretations, I argue that dissipation below the photosphere is the most important process in shaping the observed spectral shapes and evolutions. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: In press. Paper 5: Submitted.</p>
|
18 |
Unveiling the Progenitors of Short-duration Gamma-ray BurstsFong, Wen-fai 06 June 2014 (has links)
Gamma-ray bursts (GRBs) are relativistic explosions which originate at cosmological distances, and are among the most luminous transients in the universe. Following the prompt gamma-ray emission, a fading synchrotron "afterglow" is detectable at lower energies. While long-duration GRBs (duration > 2 sec) are linked to the deaths of massive stars, the progenitors of short-duration GRBs (duration < 2 sec) have remained elusive. Theoretical predictions formulated over the past two decades have suggested that they are the mergers of two compact objects, involving either two neutron stars (NS-NS) or a neutron star and a black hole (NS-BH). Such merging systems are also important to understand because they are premier candidates for gravitational wave detections with upcoming facilities and are considered likely sites of heavy element nucleosynthesis. The launch of the Swift satellite in 2004, with its rapid multi-wavelength monitoring and localization capabilities, led to the first discoveries of short GRB afterglows and therefore robust associations to host galaxies. At a Swift detection rate of ~8 events per year, the growing number of well-localized short GRBs enables comprehensive population studies of their afterglows and environments for the first time. In this thesis, I undertake a multi-wavelength observational campaign to address testable predictions for the progenitors of short GRBs. From their local environments, I show that short GRBs explode in diffuse regions of their host galaxies and are weakly correlated with the distribution of stellar mass and star formation in their host galaxies. I study the host galaxy demographics for the entire population and find that ~20-40% of short GRBs originate from elliptical galaxies, implying an older stellar progenitor. From their afterglows, I present evidence that some short GRBs are collimated in narrow jets of ~5-10 degrees, directly affecting the true energy scale and event rate. Finally, taking advantage of a decade of broad-band afterglow observations at radio through X-ray wavelengths, I find that short GRBs have median isotropic-equivalent energies of ~10^51 erg and that their local environments have low densities, ~10^-3-10^-2 cm^-3. Taken together, this thesis comprises several lines of independent evidence to demonstrate that short GRBs originate from the mergers of two compact objects, and also provides the first constraints on the explosion properties for a large sample of events. With the direct detection of gravitational waves from compact object mergers on the horizon, these studies provide necessary inputs to inform the next decade of joint electromagnetic-gravitational wave search strategies. / Astronomy
|
19 |
Pseudo-Newtonian simulations of black hole-neutron star mergers as possible progenitors of short-duration gamma-ray burstsSriskantha, Hari Haran January 2014 (has links)
Black hole-neutron star (BH-NS) mergers are promising candidates for the progenitors of short-duration gamma-ray bursts (GRBs). With the right initial conditions, the neutron star becomes tidally disrupted, eventually forming a dense, accreting disk around the black hole. The thermal energy of this black hole-disk system can be extracted via neutrino processes, while the spin energy of the black hole can be extracted via magnetic processes. Either (or even a combination of these) processes could feasibly power a relativistic jet with energy ≥~ 10 49 erg and duration ≤~ 2 s, hence producing a short-duration GRB. In this thesis, we investigate BH-NS mergers with three-dimensional, pseudo-Newtonian simulations. We use the simulation code Charybdis, which uses a dimensionally-split, reconstruct-solve-average scheme (i.e. using Riemann solvers) to solve the Euler equations of hydrodynamics. Although the code is based on a Newtonian framework, it includes pseudo- Newtonian approximations of local gravitational wave effects and the innermost stable circular orbit of the BH, which are both general relativistic phenomena. The code also includes the effects of global neutrino emission, shear viscosity and self-gravity. This thesis comprises two main projects. The first project is a parameter study of the equation of state, which encapsulates the relationship between the pressure of a fluid and its other thermodynamic properties. Although the EOS is well understood at low densities, it is yet to be constrained at supranuclear densities, and so must be treated as a parameter in numerical studies of BH-NS mergers. We present simulations using three existing EOSs, in order to investigate their effect on the merger dynamics. We find that the EOS strongly influences the fate of the NS, the properties of the accretion disk, and the neutrino emission. In the second project, we begin upgrading Charybdis to include magnetic field effects, in order to investigate the magnetic processes described above. We implement existing reconstruction and Riemann solver algorithms for the equations of magnetohydrodynamics, and present 1D tests to compare them. When modelling magnetic fields in more than one dimension, we must also deal with the divergence-free condition, ∇. B = 0. We develop a new constrained transport algorithm to ensure our code maintains this condition, and present 2D tests to confirm its accuracy. This algorithm has many advantages over existing ones, including easier implementation, greater computational efficiency and better parallelisation. Finally, we present preliminary tests that use these algorithms in simulations of BH-NS mergers.
|
20 |
Exploring the bizarrerie : research on selective physical processes in gamma-ray burstsShen, Rongfeng 02 November 2010 (has links)
Gamma-ray bursts (GRBs) are the mysterious, short and intense flashes of gamma-rays in the space, and are believed to originate from the rare, explosively devastating, stellar events that happens at cosmological distances. Enormous progress has been made from four decades of GRB research endeavor but the ultimate understanding of their origins has yet to arrive. Recently revealed features in their early afterglows broadened the opportunity space for exploration. We have carried out extensive studies on various physical processes in GRBs. We showed that the distribution of electrons' energy spectral index in GRBs and other relativistic sources is inconsistent with the prediction from the first-order Fermi theory of the shock particle acceleration. We investigated the photon scattering processes within the relativistic outflow that produces the GRB and calculated the resultant emission flux from it. We showed the scattering of the GRB prompt photons by the circum-burst dust, although an attractive possibility, can not explain the puzzling plateau component in the GRB afterglow light curve. We made meaningful constraint on the GRB prompt emission radius, R [greater-than or equal to] 10¹⁴, by studying the synchrotron self absorption for a small sample of bursts with good data. We showed that a late jet, which is thought to be producing the late X-ray flares in GRB afterglows, will produce detectable emissions from its interactions with other components in the explosive event of GRB, and identification of these emissions could verify the existence of the late jet and further prove the massive star origin of long-duration GRBs. / text
|
Page generated in 0.0502 seconds