• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 14
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 65
  • 36
  • 18
  • 15
  • 14
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The cross-section for photoelectric-equivalent interactions in germanium for gamma-ray spectral analysis

Kamboj, Sunita 05 1900 (has links)
No description available.
2

Study of Excited Superdeformed Bands in 154Dy and High-spin Spectroscopy of 171Hf

Ijaz, Qurant Ul Ann 09 December 2011 (has links)
The first project in this dissertation involves the search for and the study of excited superdeformed (SD) rotational bands in 154Dy. The data was obtained from an experiment at the 88-inch cyclotron of the Lawrence Berkeley National Laboratory via the fusion evaporation reaction 122Sn(36S, 4n) and using the Gammasphere spectrometer array to probe the high-spin states in 154Dy. With the help of large Compton-suppressed spectrometers such as GAMMASPHERE in the USA and EUROBALL in Europe, superdeformed nuclei have been identified in several regions of the chart of nuclides including 151Dy, 153Dy, 154Dy and 155Dy. The 154Dy nucleus, located in the center of A= 150 SD island, plays an important role in the study in this region. Only the lowest (yrast) SD band in 154Dy was known before this study. Three or four fold coincidence analysis was performed employing the conventional gating method as well as an automatic search routine. As the result, five excited SD bands were identified with intensities between 0.7 - 0.03 % of total reaction channel. Theoretical analysis based on Cranked Relativistic Mean Field calculations (CRMF) and the effective alignment method were carried out. The second project includes the spectroscopy of high-spin states in Hf nuclei, which were populated in another Gammasphere experiment using 128Te(48Ca, 5n) and 128Te(48Ca, 4n) reactions to obtain 171Hf and 172Hf, respectively. Three SD bands in 172Hf and one band with enhanced deformation (ED) in 171Hf have been extracted and published by our group. Subsequently, a complete highspin spectroscopy in 171Hf has been further carried out in which five new rotational bands have been identified. Their rotational properties, including spins, parities, excitation energies, aligned angular momentum and quasiparticle configurations were investigated within the framework of the cranked shell model, aided by a comparison with level structures in neighboring nuclei. The band crossings at very high rotational frequency (500 keV) are interpreted as the proton alignments. One band has been suggested to be associated with enhanced deformation based on the i13/2h9/2 proton orbitals and h9/2 neutron orbital. However, its decay pathways to known low-spin states could not be established.
3

Monte Carlo Simulations of Complex Germanium Escape Suppression Spectrometers with MCNPX a Case Study.

Esau, Andrew John. January 2009 (has links)
<p>Gamma ray spectroscopy has provided enormous amounts of information on the behaviour and structure of atomic nuclei [SHA88, BEA92, EBE08]. Most of the major discoveries in experimental nuclear physics over the last five decades are strongly associated with improvements in detector technologies. Inorganic scintilators led to the discovery in 1963 of the first excited states of a rotational band based on the ground state of 162Dy. Improvements in peak-to-background ratios and detector resolutions obtained with germanium led to the first evidence of backbending which is associated with a two quasi-particle excitation in 162Dy [SHA88]. More recently the development of composite and highly-segmented Ge detectors has significantly increased the performance and power of detection systems. The Clover detector is such a detector system and is in use at iThemba LABS. This study concerns the evaluation of the particle transport code MCNPX 2.5.0 as a tool to model complex composite detectors such as the Clover. Lanthanum silicate (LSO) and Lead tungstate (PbWO) are also evaluated as possible suppressor shield materials. It is shown that reasonable agreement between experiment and simulation is found when the experiment is accurately reproduced. However, when complex detection modes are implemented in the detector based on the number of elements that fire, MCNPX cannot be used to model the detector performance exactly. Differences between simulated and experimental results are found in suppressed add-back mode. It is proposed that the discrepancies are due to limitations in implementation of the pulse-height and special anti-coincidence tally in MCNPX. LSO and PbWO are compared to BGO as suppressor shield materials. It is found that LSO is not an ideal material for a suppression shield. PbWO is shown to give performance values similar to that of BGO. The back-plug is shown to have no effect on the Peak-to-Total ratio but is effective at reducing the background at lower energies.</p>
4

Monte Carlo Simulations of Complex Germanium Escape Suppression Spectrometers with MCNPX a Case Study.

Esau, Andrew John. January 2009 (has links)
<p>Gamma ray spectroscopy has provided enormous amounts of information on the behaviour and structure of atomic nuclei [SHA88, BEA92, EBE08]. Most of the major discoveries in experimental nuclear physics over the last five decades are strongly associated with improvements in detector technologies. Inorganic scintilators led to the discovery in 1963 of the first excited states of a rotational band based on the ground state of 162Dy. Improvements in peak-to-background ratios and detector resolutions obtained with germanium led to the first evidence of backbending which is associated with a two quasi-particle excitation in 162Dy [SHA88]. More recently the development of composite and highly-segmented Ge detectors has significantly increased the performance and power of detection systems. The Clover detector is such a detector system and is in use at iThemba LABS. This study concerns the evaluation of the particle transport code MCNPX 2.5.0 as a tool to model complex composite detectors such as the Clover. Lanthanum silicate (LSO) and Lead tungstate (PbWO) are also evaluated as possible suppressor shield materials. It is shown that reasonable agreement between experiment and simulation is found when the experiment is accurately reproduced. However, when complex detection modes are implemented in the detector based on the number of elements that fire, MCNPX cannot be used to model the detector performance exactly. Differences between simulated and experimental results are found in suppressed add-back mode. It is proposed that the discrepancies are due to limitations in implementation of the pulse-height and special anti-coincidence tally in MCNPX. LSO and PbWO are compared to BGO as suppressor shield materials. It is found that LSO is not an ideal material for a suppression shield. PbWO is shown to give performance values similar to that of BGO. The back-plug is shown to have no effect on the Peak-to-Total ratio but is effective at reducing the background at lower energies.</p>
5

Spectroscopic study of ⁸⁰Sr

Davie, Raoul Francis January 1986 (has links)
High spin states in <sup>80</sup>Sr have been studied using the techniques of in-beam γ-ray spectroscopy. The reaction used was <sup>54</sup>Fe(<sup>29</sup>Si, 2pn)<sup>80</sup>Sr at beam energies between 85 and 110 MeV. γ-γ coincidence measurements were performed with a thin target to investigate the level structure. Both neutron gated and singles angular distribution measurements were carried out to aid in the assignment of level spins. The directional correlation ratios extracted from the γ-γ coincidence data provided a consistency check for the spin assignments. Level lifetimes were measured by the Doppler shift attenuation method in a thick target γ-γ coincidence measurement. The ground state band has been identified up to (26<sup>+</sup>) and three previously unobserved sidebands have been discovered. The deduced level scheme is compared with cranking model calculations; the predicted transformation to mostly non-collective excitations of an oblate shape is not observed experimentally. The behaviour of the J<sup>(1)</sup> and J<sup>(2)</sup> moments of inertia is discussed and presented as evidence for either static or dynamic γ-deformation in the light Sr isotopes. In addition, the level structure is compared with IBM-2 calculations. These calculations indicate the importance of proton excitations across the Z=40 subshell gap, into the g<sub>9/2</sub> orbital, and suggest that the lowest lying <sup>80</sup>Sr sideband can be identified with the collective IBM-2 quasi-γ band. NUCLEAR REACTIONS <sup>54</sup>Fe(<sup>29</sup>Si, 2pn), ,em>E = 85 - 110 MeV; measured Eγ, Iγ(θ), γ-γ, n-γ coincidences, DCO ratios, Doppler shifted γ-ray lineshapes. <sup>80</sup>Sr deduced levels, J, π, τ. Enriched target, Ge(Li), Ge, NE213 detectors.
6

Structure of superdeformed bands in cerium and neodymium isotopes involving neutron i13/2 (N=6) intruder states

Joss, David Thomas January 1998 (has links)
No description available.
7

Monte carlo simulations of complex germanium escape suppression spectrometers with MCNPX a case study

Esau, Andrew John January 2009 (has links)
Magister Scientiae - MSc / Gamma ray spectroscopy has provided enormous amounts of information on the behaviour and structure of atomic nuclei [SHA88, BEA92, EBE08]. Most of the major discoveries in experimental nuclear physics over the last five decades are strongly associated with improvements in detector technologies. Inorganic scintilators led to the discovery in 1963 of the first excited states of a rotational band based on the ground state of 162Dy. Improvements in peak-to-background ratios and detector resolutions obtained with germanium led to the first evidence of backbending which is associated with a two quasi-particle excitation in 162Dy [SHA88]. More recently the development of composite and highly-segmented Ge detectors has significantly increased the performance and power of detection systems. The Clover detector is such a detector system and is in use at iThemba LABS. This study concerns the evaluation of the particle transport code MCNPX 2.5.0 as a tool to model complex composite detectors such as the Clover. Lanthanum silicate (LSO) and Lead tungstate (PbWO) are also evaluated as possible suppressor shield materials. It is shown that reasonable agreement between experiment and simulation is found when the experiment is accurately reproduced. However, when complex detection modes are implemented in the detector based on the number of elements that fire, MCNPX cannot be used to model the detector performance exactly. Differences between simulated and experimental results are found in suppressed add-back mode. It is proposed that the discrepancies are due to limitations in implementation of the pulse-height and special anti-coincidence tally in MCNPX. LSO and PbWO are compared to BGO as suppressor shield materials. It is found that LSO is not an ideal material for a suppression shield. PbWO is shown to give performance values similar to that of BGO. The back-plug is shown to have no effect on the Peak-to-Total ratio but is effective at reducing the background at lower energies. / South Africa
8

Gamma spectroscopy of the doubly - odd ¹��T1 nucleus.

Ramashidzha, Tshifhiwa Marius January 2006 (has links)
<p>The odd &ndash / odd Tl nuclei with A &ge / 190 have moderate oblate nuclear deformation and show rotational bands built on different quasiparticle excitations. Several phenomena, not yet fully understood, were observed in these nuclei, such as large signature splitting in the yrast band (built on a &pi / h9/2&otimes / &nu / i13/2 configuration), possible non &ndash / axiality of the nuclear shape, etc. In this work the high &ndash / spin states in 194Tl were studied. The 194Tl nuclei were produced in the 181Ta (18O, 5n) 194Tl reaction at a beam energy of 93 MeV and the &gamma / - rays were detected using the AFRODITE array. The obtained extended level scheme of 194Tl is presented and discussed in this work. CSM (Cranking shell model) and TRS (Total Routhians Surface) models were both applied to interpret the results for band 1. The results were compared with the neighboring isotone 193Hg.</p>
9

Experimental studies for explosive nuclear astrophysics

Doherty, Daniel Thomas January 2014 (has links)
In the ejecta from ONe novae outbursts nuclei up to A~40 are observed. The 30P(p,γ)31S reaction is thought to be the bottleneck for the production of all elements heavier than sulphur. However, due to uncertainties in the properties of key proton-unbound resonances the reaction rate is not well determined. In this thesis work, excited states in 31S were populated via the 28Si(4He,n) light-ion fusion-evaporation reaction and the prompt electromagnetic radiation was then detected with the GAMMASPHERE detector array. This γ-ray spectroscopy study, and comparisons with the stable mirror nucleus 31P, allowed the determination of the 31S level structure below the proton-emission threshold and also of the key proton-unbound states for the 30P(p,γ)31S reaction. In particular, transitions from key, low-spin states were observed for the first time. This new information was then used for the re-evaluation of the 30P(p,γ)31S reaction in the temperature range relevant for ONe novae. The newly calculated rate is higher than previous estimates implying a greater flux of material processed to high-Z elements in novae. Astrophysical X-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The 15O(α,γ)19Ne reaction is one reaction that allows breakout from these CNO cycle and into the rp-process to fuel outbursts. The reaction is expected to be dominated by a single 3/2+ resonance at 4.033 MeV in 19Ne, however, limited information is available on this key state. This thesis work reports on a pioneering study of the 20Ne(p,d)19Ne reaction in inverse kinematics performed at the Experimental Storage Ring (ESR) as a means of accessing the 4.033-MeV state in 19Ne. The unique background free, high luminosity conditions of the ESR were utilised for this, the first transfer reaction performed at the ESR. The results of this pioneering test experiment are presented along with suggestions for future measurements at storage ring facilities.
10

Gamma spectroscopy of the doubly - odd ¹��T1 nucleus.

Ramashidzha, Tshifhiwa Marius January 2006 (has links)
<p>The odd &ndash / odd Tl nuclei with A &ge / 190 have moderate oblate nuclear deformation and show rotational bands built on different quasiparticle excitations. Several phenomena, not yet fully understood, were observed in these nuclei, such as large signature splitting in the yrast band (built on a &pi / h9/2&otimes / &nu / i13/2 configuration), possible non &ndash / axiality of the nuclear shape, etc. In this work the high &ndash / spin states in 194Tl were studied. The 194Tl nuclei were produced in the 181Ta (18O, 5n) 194Tl reaction at a beam energy of 93 MeV and the &gamma / - rays were detected using the AFRODITE array. The obtained extended level scheme of 194Tl is presented and discussed in this work. CSM (Cranking shell model) and TRS (Total Routhians Surface) models were both applied to interpret the results for band 1. The results were compared with the neighboring isotone 193Hg.</p>

Page generated in 0.0782 seconds