• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Constraints on the Age of Deposition and Provenance of the Metasedimentary Rocks in the Nashoba Terrane, SE New England

Loan, MaryEllen Louise January 2011 (has links)
Thesis advisor: J. Christopher Hepburn / The Nashoba terrane of SE New England is one of three peri-Gondwanan tectonic blocks caught between Laurentia and Gondwana during the closure of the Iapetus Ocean in the early to mid- Paleozoic. U-Pb analyses (LA-ICP-MS) were carried out on zircon suites from the meta-sedimentary rocks of the Nashoba terrane. The youngest detrital zircons in the meta-sedimentary rocks of the Nashoba terrane are Ordovician in age. There is no significant difference in age between meta-sedimentary units of the Nashoba terrane across the Assabet River Fault Zone, a major fault zone that bisects the NT in a SE and a NW par. Zircon in meta-sedimentary rocks in the Marlboro Fm., the oldest unit of the Nashoba terrane, is rare, which may reflect the basaltic nature of the source material, and is commonly metamict. The Marlboro Fm. contained the oldest detrital grain of all the analyzed samples, with a core of ~3.3 Ga and rim of ~2.6 Ga indicating that it was sourced from Archaen crustal material. Detrital zircons from the Nashoba terrane show a complete age record between the Paleoproterozoic and Paleozoic that strongly supports a provenance from the Oaxiqua margin of Amazonia. The detrital zircon suite of the Nashoba terrane is distinct from both Avalonia and the Merrimack belt; however, they resemble zircon suites from Ganderia. This study proposes that the Nashoba terrane of Massachusetts correlates with the passive trailing edge of Ganderia. Finally, metamorphic zircon analyses of the terrane show that the Nashoba terrane experienced a peak in hydrothermal fluid infiltration during the Neoacadian orogeny. / Thesis (MS) — Boston College, 2011. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.

Page generated in 0.0488 seconds