• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Pedestrian Volumes on the Operational Performance of Modern Roundabouts

Sindi, Alaa 25 August 2011 (has links)
Modern roundabouts are increasingly being considered as a preferred intersection design within urban street networks in North America due, in large part, to the increased safety provided by roundabout. In the last decade, much research has been conducted in North America to quantify the performance of roundabouts in terms of vehicle delay as a function of vehicle traffic volume and roundabout geometry. In most jurisdictions, vehicles entering and existing the roundabout are required by law to yield right-of-way to pedestrians crossing the roundabout approach, and consequently, the presence of substantial pedestrian volumes are expected to degrade operational performance of the roundabout for vehicles. However, very little research has been conducted to estimate the impact that pedestrian volumes have on average vehicle delay. The aim of this research is to study the effects of pedestrian volume, entry traffic volume, and conflicting or circulating volume, on the delays that vehicles experience when traversing the roundabout. An analytical model is proposed to estimate vehicle delays on the basis of traffic flow and queuing theory. The model is applicable to single lane roundabouts. The model was calibrated and validated using vehicle delays obtained from the micro-simulation software, VISSIM (version 5.2) for a range of different conditions. The research described in this thesis demonstrates that pedestrian flows cause delays to vehicles traversing the roundabout in four distinct ways. Existing analytical techniques included within most design manuals consider only one of these sources of delays and consequently, conventional models typically under-estimate the impact that pedestrian flows have in terms of increasing delays to vehicles traversing the roundabout.
2

Impact of Pedestrian Volumes on the Operational Performance of Modern Roundabouts

Sindi, Alaa 25 August 2011 (has links)
Modern roundabouts are increasingly being considered as a preferred intersection design within urban street networks in North America due, in large part, to the increased safety provided by roundabout. In the last decade, much research has been conducted in North America to quantify the performance of roundabouts in terms of vehicle delay as a function of vehicle traffic volume and roundabout geometry. In most jurisdictions, vehicles entering and existing the roundabout are required by law to yield right-of-way to pedestrians crossing the roundabout approach, and consequently, the presence of substantial pedestrian volumes are expected to degrade operational performance of the roundabout for vehicles. However, very little research has been conducted to estimate the impact that pedestrian volumes have on average vehicle delay. The aim of this research is to study the effects of pedestrian volume, entry traffic volume, and conflicting or circulating volume, on the delays that vehicles experience when traversing the roundabout. An analytical model is proposed to estimate vehicle delays on the basis of traffic flow and queuing theory. The model is applicable to single lane roundabouts. The model was calibrated and validated using vehicle delays obtained from the micro-simulation software, VISSIM (version 5.2) for a range of different conditions. The research described in this thesis demonstrates that pedestrian flows cause delays to vehicles traversing the roundabout in four distinct ways. Existing analytical techniques included within most design manuals consider only one of these sources of delays and consequently, conventional models typically under-estimate the impact that pedestrian flows have in terms of increasing delays to vehicles traversing the roundabout.
3

Simulation-Based Integrated Control Algorithm for Controlling Shockwave Propagation on Freeways and Queue Spillback at On-ramps

Allam, Karteek Kumar January 2015 (has links)
No description available.
4

Investigating Rural Expressway Crashes at Two-Way Stop-Controlled Intersections

Heckler, Elliott K. January 2015 (has links)
No description available.
5

Improving Operation Efficiency of A MAjor-Minor T-intersection in Mixed Traffic with Connected Automated Vehicles

Alanazi, Fayez K. 04 August 2021 (has links)
No description available.
6

Safety and Operational Assessment of Gap Acceptance Through Large-Scale Field Evaluation

Tupper, Steven Maxwell 01 January 2011 (has links) (PDF)
Given that “driver error” is cited as a contributing factor in 93 percent of all crashes, understanding driver behavior is an essential element in mitigating the crash problem. Among the more dangerous roadway elements are unsignalized intersections where drivers’ gap acceptance behavior is strongly correlated to the operational and safety performance of the intersection. While a basic understanding of drivers’ gap acceptance behavior exists, several unanswered questions remain. Previous work has attempted to address some of these questions, however to date the research has been somewhat limited in scope and scale due to the challenges of collecting high fidelity gap acceptance data in the field. This research initiative utilized software newly developed for this project to collect gap acceptance data on 2,767 drivers at 60 sites, totaling 10,419 driver decisions and 22,639 gaps in traffic. This large-scale data collection effort allowed many of these remaining questions to be answered with an improved degree of certainty. This research initiative showed that naturalistic driver gap acceptance behavior can realistically be observed and accurately recorded in the field in real time using a newly developed software tool. This software tool and study methodology was validation using high fidelity video reduction techniques. This research compared different methods of analyzing gap acceptance data, in particular determining critical gap, seeing that the method used significantly affects the results. Conclusions were draw about the merits of each of the ten analysis methods considered. Through the analysis of the large data set collected, the research determined that there exist appreciable and identifiable differences in gap acceptance behavior across drivers under varied conditions. The greatest differences were seen in relationship to wait time and queue presence. If a driver has queued vehicles waiting behind them and/or has been waiting to turn for a long period of time, they will be more likely to accept a smaller gap in traffic. Additionally, an analysis of gap acceptance as it relates to crash experience identified critical situations where a driver's gap acceptance behavior contributes to the occurrence of a crash. Characteristics of the driver such as gender and approximate age associated with specific crashes were examined. Teen drivers were identified as exhibiting aggressive gap acceptance behavior and were found to be overrepresented in gap acceptance related crashes. Ultimately, a better understanding of the driver and environmental factors that significantly contribute to increased crash risk will help guide the way to targeted design solutions.
7

Evaluation of Driver Performance While Making Unprotected Intersection Turns Utilizing Naturalistic Data Integration Methods

Aich, Sudipto 18 January 2012 (has links)
Within the set of all vehicle crashes that occur annually, of intersection-related crashes are over-represented. The research conducted here uses an empirical approach to study driver behavior at intersections, in a naturalistic paradigm. A data-mining algorithm was used to aggregate the data from two different naturalistic databases to obtain instances of unprotected turns at the same intersection. Several dependent variables were analyzed which included visual entropy, mean-duration of glances to locations in the driver's view, gap-acceptance/rejection time. Kinematic dependent variables include peak/average speed, and peak longitudinal and lateral acceleration. Results indicated that visual entropy and peak speed differs amongst drivers of the three age-groups (older, middle-age, teens) in the presence of traffic in the intersecting streams while negotiating a left turn. Although not significant, but approaching significance, were differences in gap acceptance times, with the older driver accepting larger gaps compared to the younger teen drivers. Significant differences were observed for peak speed and average speed during a left turn, with younger drivers exhibiting higher values for both. Overall, this research has resulted in contribution towards two types of engineering application. Firstly, the analyses of traffic levels, gap acceptance, and gap non-acceptance represented exploratory efforts, ones that ventured into new areas of technical content, using newly available naturalistic driving data. Secondly, the findings from this thesis are among the few that can be used to inform the further development, refinement, and testing of technology (and training) solutions intended to assist drivers in making successful turns and avoiding crashes at intersections. / Master of Science
8

DEVELOPMENT OF ADVISORY SYSTEM FOR SAFE GAP ACCEPTANCE BY OLDER DRIVERS

El-Gehawe, Nader 11 October 2021 (has links)
No description available.
9

Modeling Permissive Left-Turn Gap Acceptance Behavior at Signalized Intersections

Zohdy, Ismail Hisham 04 December 2009 (has links)
The research presented in this thesis, studies driver gap acceptance behavior for permissive left turn movements at signalized intersections. The thesis attempts to model the gap acceptance behavior using three different approaches, a deterministic statistical approach, a stochastic approach, and a psycho-physical approach. First, the deterministic statistical modeling approach is conducted using logistic regression to characterize the impact of a number of variables on driver gap acceptance behavior. The variables studied are the gap duration, the driver's wait time in search of an acceptable gap, the time required to travel to clear the conflict point, and the rain intensity. Considering stochastic gap acceptance, two stochastic approaches are compared, namely: a Bayesian and a Bootstrap approach. The study develops a procedure to model stochastic gap acceptance behavior while capturing model parameter correlations without the need to store all parameter combinations. The model is then implemented to estimate stochastic opposed saturation flow rates. Finally, the third approach uses a psycho-physical modeling approach. The physical component captures the vehicle constraints on gap acceptance behavior using vehicle dynamics models while the psychological component models the driver deliberation and decision process. In general, the three proposed models capture gap acceptance behavior for different vehicle types, roadway surface conditions, weather effects and types of control which could affect the driver gap acceptance behavior. These findings can be used to develop weather responsive traffic signal timings and can also be integrated into emerging IntelliDrive systems. / Master of Science
10

Cyclists’ road safety - Do bicycle type, age and infrastructure characteristics matter? / Verkehrssicherheit von Fahrradfahrern - Welche Rolle spielen der Fahrradtyp, Alter der Radfahrer und Infrastrukturgegebenheiten?

Schleinitz, Katja 27 May 2016 (has links) (PDF)
In den letzten Jahren hat die Verbreitung von Elektrofahrrädern, sogenannten Pedelecs, stark zugenommen. Dies ist vor dem Hintergrund der Umweltfreundlichkeit und Gesundheitsförderlichkeit dieser Form der Fortbewegung zunächst grundsätzlich positiv zu bewerten. Gleichzeitig besteht jedoch die Sorge, dass Elektrofahrradfahrer häufiger und in schwerere Unfälle verwickelt werden könnten als Fahrradfahrer. So bieten motorgestützte Elektrofahrräder das Potential, höhere Geschwindigkeiten zu erreichen als konventionelle Fahrräder, und werden zudem vor allem von älteren Verkehrsteilnehmern genutzt. Nicht zuletzt deswegen könnten sich durch diese neue Mobilitätsform auch neue Herausforderungen für die Verkehrs-, insbesondere Radinfrastrukturen ergeben. Tatsächlich jedoch blieben die Auswirkungen auf die Verkehrssicherheit bisher weitestgehend ungeklärt. Um dieser Problematik zu begegnen, wurde im Rahmen einer Naturalistic Cycling Studie (NCS) und mehreren experimentellen Untersuchungen folgenden Fragen nachgegangen: Fahren Elektrofahrradfahrer tatsächlich schneller als nicht-motorisierte Radfahrer? Wie wirken sich diese potentiell höheren Geschwindigkeiten darauf aus, wie Elektrofahrradfahrer von Autofahrern wahrgenommen werden? Welchen Einfluss hat das Alter der Radfahrer auf die Geschwindigkeiten und auch auf deren Neigung zu Unfällen bzw. sicherheitskritischen Situationen im Verkehr? Und welchen Einfluss hat die Infrastruktur auf die gewählten Geschwindigkeiten und die Auftretenshäufigkeit von kritischen Situationen? Diese und weitere Fragen wurden in insgesamt vier Arbeiten, die in internationalen Fachzeitschriften publiziert sind (I - IV), beleuchtet. Im ersten Artikel werden die Geschwindigkeiten von Fahrradfahrern (n = 31) im Gegensatz zu Pedelecfahrern (n = 49; Motorunterstützung bis 25 km/h) sowie S-Pedelecfahrern (n = 10; Motorunterstützung bis 45 km/h) betrachtet. Als Einflussgrößen wurden das Alter und die Nutzung verschiedener Infrastrukturtypen der Probanden ausgewertet. Alle Räder wurden mit einem Datenaufzeichnungssystem inklusive Kameras und Geschwindigkeitssensoren ausgestattet, um für vier Wochen ein Bild des natürlichen Fahrverhaltens zu erhalten. Unabhängig von der Infrastruktur waren S-Pedelecfahrer schneller unterwegs waren als Fahrrad- und Pedelecfahrer. Pedelecfahrer fuhren ebenfalls signifikant schneller als konventionelle Fahrradfahrer. Die höchsten Geschwindigkeiten wurden für alle Radtypen auf der (mit dem motorisierten Verkehr geteilten) Fahrbahn sowie der Radinfrastruktur gemessen. Das Alter der Fahrer hatte ebenfalls einen signifikanten Einfluss auf die Geschwindigkeit: Unabhängig vom Fahrradtyp waren ältere Fahrer (65 Jahre und älter) deutlich langsamer als Probanden jüngerer Altersgruppen (41-64 Jahre sowie 40 Jahre und jünger). Die beiden jüngeren Altersgruppen fuhren selbst ohne Motorunterstützung (konventionelles Fahrrad) schneller als die älteren Pedelecfahrer. Genauere Analysen (wie etwa das Verhalten beim Bergabfahren) legen nahe, dass dieser Befund nicht allein der physischen Leistungsfähigkeit zugeschrieben werden kann. Es scheint vielmehr so, als ob ältere Fahrrad- und Elektroradfahrer durch die geringere Geschwindigkeit versuchen, Defizite in der Reaktionsgeschwindigkeit auszugleichen bzw. generell vorsichtiger fahren. Der zweite Artikel beschäftigt sich mit der Frage, inwieweit sich die Art und Häufigkeit von Unfällen und kritischen Situationen bei den drei verschiedenen Altersgruppen unterscheiden. Auch hier wurde auf die Daten aus der NCS zurückgegriffen, auf deren Basis eine umfassende Videokodierung durchgeführt wurde. Es zeigten sich keine Unterschiede zwischen den Altersgruppen hinsichtlich des Auftretens kritischer Situationen; weder in Bezug auf die absolute Anzahl, noch gemessen an der relativen Häufigkeit (pro 100 km). Ebenfalls keine Zusammenhänge fanden sich zwischen dem Alter der Fahrer und der Art von Konfliktpartnern oder der Tageszeit der kritischen Situationen. Auch hier scheint es so, dass Ältere keinem erhöhten Risiko unterliegen, und etwaige altersbedingte Einschränkungen kompensieren können. Bei der Betrachtung des Einflusses des Infrastrukturtyps auf das Auftreten von kritischen Situationen zeigte sich, dass, bezogen auf die zurückgelegten Wegstrecken, die Nutzung der mit dem motorisierten Verkehr geteilten Fahrbahn als relativ sicher einzustufen ist. Demgegenüber ergab sich ein erhöhtes Risiko für Unfälle oder kritische Situationen auf designierter Radinfrastruktur. Dies widerspricht der Wahrnehmung vieler Radfahrer, die diese Infrastruktur als besonders sicher empfinden. Es ist allerdings anzunehmen, dass diese Wahrnehmung nicht nur auf der vermeintlichen Auftretenshäufigkeit, sondern auch auf dem angenommenen Schweregrad einer möglichen Kollision beruht. Zwei weitere Artikel beschäftigen sich damit, wie Autofahrer die Geschwindigkeit beziehungsweise die Annäherung von Elektrofahrrädern wahrnehmen. Dies ist insbesondere in Kreuzungssituationen relevant, in denen Autofahrer abschätzen müssen, ob sie noch rechtzeitig vor einem Fahrrad abbiegen können ohne mit diesem zu kollidieren. Es wurde vermutet, dass die fehlende Erfahrung mit Elektrofahrrädern und der von ihnen erreichbaren Geschwindigkeit vermehrt zu entsprechenden Unfällen führen könnte. Der Frage wurde mit einem Experiment zur Lückenakzeptanz auf der Teststrecke (Artikel III) und einer Videostudie zu Schätzungen von Zeitlückengrößen (Artikel IV) nachgegangen. Es zeigte sich, dass Autofahrer die verbleibende Zeit bis zur Kollision für Elektrofahrradfahrer geringer einschätzten als für konventionelle Radfahrer. Zudem wählten Autofahrer bei einem herannahenden Elektrofahrrad signifikant kleinere Zeitlücken zum Abbiegen, als bei einem konventionellen Fahrrad. Dieser Effekt verstärkte sich sogar noch, wenn die Geschwindigkeit des herannahenden Zweirades zunahm. Diese Befunde legen nahe, dass die Einschätzung der Geschwindigkeit beziehungsweise Annäherung von Elektrofahrrädern durchaus risikobehaftet ist. Die Ergebnisse dieser Arbeit helfen dabei, die Auswirkungen der steigenden Verbreitung von Elektrofahrrädern auf die Verkehrssicherheit einzuschätzen. Auch erlauben es die Erkenntnisse, Maßnahmen zur Erhöhung der Verkehrssicherheit für Fahrrad- und Elektrofahrradfahrern aller Altersgruppen abzuleiten. Damit leistet diese Arbeit einen Beitrag zur Unterstützung einer sicheren, gesunden und umweltfreundlichen Mobilität. / Electric bicycles (e-bikes) are a relatively new form of transport. The aim of this dissertation is to investigate their effects on road safety. In 2012, at the beginning of this dissertation project, knowledge of e-bikes in general and their impact on road safety in particular was relatively scarce. As a starting point of this work, the influence of e-bikes on road safety was investigated compared relative to the road safety of conventional bicycles. Additionally, the influence of the age of the rider on safety is considered as a supplementary factor. Special attention is paid to the impact of the infrastructure utilised by riders and its characteristics. This cumulative dissertation consists of four research articles, labelled Paper I to IV accordingly. Papers I to IV have been published in peer reviewed journals. The synopsis provides an overview of previous research as well as a theoretical framework of the safety of cyclists and e-bike riders. Speed, and its perception through other road users (measured with experiments to gap acceptance and time to arrival (TTA) estimates) are considered as relevant factors for road safety. In Chapter 4, the research objectives are presented in detail. The methodology is clarified in Chapter 5, and in Chapter 6 and 7 the results are summarised and discussed. The implications of the results are considered in Chapter 8. In Paper I, the differences in speed between bicycles, pedelecs (pedal electric cycle, motor assistance up to 25 km/h) and S-pedelecs (pedal electric cycle, motor assistance up to 45 km/h) were investigated. Additionally the influence of infrastructure type, road gradient and the age of the rider were taken into account. Paper II is concerned with the influence of different conflict partners in crashes, and the utilisation of infrastructure on the safety of cyclists. For this purpose, safety critical events (SCE) involving cyclists were examined, with a special focus on the differences between younger, middle aged, and older cyclists. Papers III and IV focus on the perception of speed of e-bike and bicycle riders through other road users and its implications for road safety. Paper III specifically deals with the gap acceptance of car drivers at intersections in the presence of cyclists and e-bike riders with different speeds and under varying conditions (e.g. at intersections with different road gradients). Paper IV looks at drivers TTA estimates of approaching bicycles and e-bikes in combination with other influencing factors (e.g. speed, cyclist age).

Page generated in 0.0668 seconds