• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation génétique, phénotypique et formation de biofilm des souches de Candida albicans répondant ou non au farnésol

Irimes, Cristina 12 1900 (has links)
Candida albicans, le pathogène opportuniste le plus commun, peut subir des transitions morphologiques entre la forme levure et la forme hyphe, jouant un rôle dans la formation de biofilm. Le farnésol, un lipide endogène produit par C. albicans, est une molécule de quorum sensing qui inhibe cette transition morphologique. Certaines souches ne répondent pas au farnésol et nous avons vérifié les hypothèses que : 1) l’isolat clinique SC5314, la souche la mieux caractérisée, est un répondeur au farnésol; 2) la germination, la croissance et la formation de biofilm des non répondeurs diffèrent des répondeurs; 3) l’absence de la réponse au farnésol se manifeste en dehors de conditions de culture précises; 4) le farnésol agit via un récepteur nucléaire qui présente des altérations chez les non répondeurs; 5) la différence de la réponse au farnésol entre les souches s’explique par des variations au niveau transcriptionnel de certains gènes (CHK1, HST7, CPH1, GAP1, RAM2 et DPP3). Les non répondeurs produisent un plus grand nombre d’hyphes, forment 60% plus de biofilm et croissent 50% moins vite que les répondeurs. La souche SC5314 se comporte comme un répondeur. L’absence de la réponse au farnésol se manifeste indépendamment des conditions de culture. Cependant, elle ne s’explique pas par une différence dans le niveau d’expression des gènes proposés, excepté pour DPP3 qui est surexprimé chez le non répondeur ATTC® 36802, suggérant ainsi une surproduction de farnésol chez cette souche. De plus, si le farnésol agit via un récepteur nucléaire, il sera d’un type non décrit précédemment. / Candida albicans, the most common fungal pathogen, can undergo morphological transitions between yeast and hyphal forms, which are associated with biofilm formation. Farnesol, an endogenous lipid produced by C. albicans, is a quorum sensing molecule that inhibits this transition. Previous work identified two clinical isolates that didn’t respond to farnesol in colony morphology and biofilm assays. Our goal is to better understand C. albicans response to farnesol using these natural farnesol non responders. We have hypothesized that : 1) clinical isolate SC5314, the most characterized strain, is a farnesol responder; 2) non responders’ germination, growth and biofilm formation are different from those of responders; 3) lack of response to farnesol occurs even outside specific culture conditions; 4) farnesol acts through a nuclear receptor that is altered in non responders; 5) difference in farnesol response between strains is explained by transcriptional variations of specific genes (CHK1, HST7, CPH1, GAP1, RAM2 and DPP3), that were previously shown to be potentially involved in farnesol’s mechanism of action. Non responders produce more hyphae, form 60 % more biofilm and grow 50% slower than responders. The SC5314 strain acts like a responder. Lack of response to farnesol occurs regardless of culture conditions. However, the refractory response to farnesol is not explained by a difference in the proposed genes expression level, except for DPP3 that is upregulated in ATTC® 36802 non responder, suggesting an overproduction of farnesol by this strain. Furthermore, if farnesol acts trough a nuclear receptor, it will be a type not previously described.
2

Caractérisation génétique, phénotypique et formation de biofilm des souches de Candida albicans répondant ou non au farnésol

Irimes, Cristina 12 1900 (has links)
Candida albicans, le pathogène opportuniste le plus commun, peut subir des transitions morphologiques entre la forme levure et la forme hyphe, jouant un rôle dans la formation de biofilm. Le farnésol, un lipide endogène produit par C. albicans, est une molécule de quorum sensing qui inhibe cette transition morphologique. Certaines souches ne répondent pas au farnésol et nous avons vérifié les hypothèses que : 1) l’isolat clinique SC5314, la souche la mieux caractérisée, est un répondeur au farnésol; 2) la germination, la croissance et la formation de biofilm des non répondeurs diffèrent des répondeurs; 3) l’absence de la réponse au farnésol se manifeste en dehors de conditions de culture précises; 4) le farnésol agit via un récepteur nucléaire qui présente des altérations chez les non répondeurs; 5) la différence de la réponse au farnésol entre les souches s’explique par des variations au niveau transcriptionnel de certains gènes (CHK1, HST7, CPH1, GAP1, RAM2 et DPP3). Les non répondeurs produisent un plus grand nombre d’hyphes, forment 60% plus de biofilm et croissent 50% moins vite que les répondeurs. La souche SC5314 se comporte comme un répondeur. L’absence de la réponse au farnésol se manifeste indépendamment des conditions de culture. Cependant, elle ne s’explique pas par une différence dans le niveau d’expression des gènes proposés, excepté pour DPP3 qui est surexprimé chez le non répondeur ATTC® 36802, suggérant ainsi une surproduction de farnésol chez cette souche. De plus, si le farnésol agit via un récepteur nucléaire, il sera d’un type non décrit précédemment. / Candida albicans, the most common fungal pathogen, can undergo morphological transitions between yeast and hyphal forms, which are associated with biofilm formation. Farnesol, an endogenous lipid produced by C. albicans, is a quorum sensing molecule that inhibits this transition. Previous work identified two clinical isolates that didn’t respond to farnesol in colony morphology and biofilm assays. Our goal is to better understand C. albicans response to farnesol using these natural farnesol non responders. We have hypothesized that : 1) clinical isolate SC5314, the most characterized strain, is a farnesol responder; 2) non responders’ germination, growth and biofilm formation are different from those of responders; 3) lack of response to farnesol occurs even outside specific culture conditions; 4) farnesol acts through a nuclear receptor that is altered in non responders; 5) difference in farnesol response between strains is explained by transcriptional variations of specific genes (CHK1, HST7, CPH1, GAP1, RAM2 and DPP3), that were previously shown to be potentially involved in farnesol’s mechanism of action. Non responders produce more hyphae, form 60 % more biofilm and grow 50% slower than responders. The SC5314 strain acts like a responder. Lack of response to farnesol occurs regardless of culture conditions. However, the refractory response to farnesol is not explained by a difference in the proposed genes expression level, except for DPP3 that is upregulated in ATTC® 36802 non responder, suggesting an overproduction of farnesol by this strain. Furthermore, if farnesol acts trough a nuclear receptor, it will be a type not previously described.
3

Signals and mechanisms controlling the ubiquitylation and down-regulation of the yeast general amino acid permease

Merhi, Ahmad 20 May 2011 (has links)
Cell surface transport proteins play a crucial role in all cells, from unicellular organisms to mammals, by conferring to the plasma membrane selective permeability to a wide range of ions and small molecules. The activity of these proteins is very often regulated by controlling their amount at the plasma membrane where they are removed by means of selective endocytosis in response to signals and changes in the environment.<p>One of the membrane proteins of the yeast Saccharomyces cerevisiae whose regulation has been extensively studied is the general amino acid permease. Previous studies on Gap1 and other yeast permeases revealed that ubiquitin plays a key role in the membrane trafficking of these proteins by providing a signal that triggers their internalization in endocytic vesicles and that promote their sorting into intra-endosomal vesicles for subsequent delivery into the lumen of the vacuole, the lysosome of yeast. <p>In the first part of this work, we report the isolation of 64 mutant forms of the Gap1 protein and their exploitation in a systematic functional study of the predicted intracellular regions of the permease. The phenotypic analysis of these mutants revealed an important role of certain amino acid sequences in the (i) transport of the permease through the secretory pathway (ii) intrinsic activity of the permease at the plasma membrane (iii) stability of the protein at the cell surface (iv) sorting of the protein into intra-endosomal vesicles. Further investigation of some of these mutants allowed us to unravel an original mechanism for the degradation of the permease that is independent of its ubiquitylation.<p>In the second part of the work, we used yet other Gap1 mutants to study the signals and pathways inducing the ubiquitylation and endocytosis of the permease. Also, we further investigated the molecular mechanisms inducing Gap1 ubiquitylation. <p>All these results together allow us to better understand the mechanisms controlling the ubiquitin dependent down-regulation of plasma membrane proteins. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0285 seconds