• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 21
  • 9
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 156
  • 156
  • 37
  • 34
  • 33
  • 32
  • 30
  • 30
  • 28
  • 27
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Development of a Sensor System for Rapid Detection of Volatile Organic Compounds in Biomedical Applications

Paula Andrea Angarita (11806427) 20 December 2021 (has links)
<p>Volatile organic compounds (VOCs) are endogenous byproducts of metabolic pathways that can be altered by a disease or condition, leading to an associated and unique VOC profile or signature. Current methodologies for VOC detection include canines, gas chromatography-mass spectrometry (GC-MS), and electronic nose (eNose). Some of the challenges for canines and GC-MS are cost-effectiveness, extensive training, expensive instrumentation. On the other hand, a significant downfall of the eNose is low selectivity. This thesis proposes to design a breathalyzer using chemiresistive gas sensors that detects VOCs from human breath, and subsequently create an interface to process and deliver the results via Bluetooth Low Energy (BLE). Breath samples were collected from patients with hypoglycemia, COVID-19, and healthy controls for both. Samples were processed, analyzed using GC-MS and probed through statistical analysis. A panel of 6 VOC biomarkers distinguished between hypoglycemia (HYPO) and Normal samples with a training AUC of 0.98 and a testing AUC of 0.93. For COVID-19, a panel of 3 VOC biomarkers distinguished between COVID-19 positive symptomatic (COVID-19) and healthy Control samples with a training area under the curve (AUC) of receiver operating characteristic (ROC) of 1.0 and cross-validation (CV) AUC of 0.99. The model was validated with COVID-19 Recovery samples. The discovery of these biomarkers enables the development of selective gas sensors to detect the VOCs. </p><p><br></p><p>Polyethylenimine-ether functionalized gold nanoparticle (PEI-EGNP) gas sensors were designed and fabricated in the lab and metal oxide (MOX) semiconductor gas sensors were obtained from Nanoz (Chip 1: SnO<sub>2</sub> and Chip 2: WO<sub>3</sub>). These sensors were tested at different relative humidity (RH) levels, and VOC concentrations. Contact angle which measures hydrophobicity, was 84° and the thickness of the PEI-EGNP coating was 11 µ m. The PEI-EGNP sensor response at RH 85% had a signal 10x higher than at RH 0%. Optimization of the MOX sensor was performed by changing the heater voltage and concentration of VOCs. At RH 85% and heater voltage of 2500 mV, the performance of the sensors increased. Chip 2 had higher sensitivity towards VOCs especially for one of the VOC biomarkers identified for COVID-19. PCA distinguished VOC biomarkers of HYPO, COVID-19, and healthy human breath using the Nanoz. A sensor interface was created to integrate the PEI-EGNP sensors with the printed circuit board (PCB) and Bluno Nano to perform machine learning. The sensor interface can currently process and make decisions from the data whether the breath is HYPO (-) or Normal (+). This data is then sent via BLE to the Hypo Alert app to display the decision.</p>
152

The Vigani Cabinet - Analysis of historical resinous materials by gas chromatography - mass spectrometry and infrared spectroscopy

Steigenberger, Gundel 14 May 2013 (has links)
Natural resins have been in use for a long time and for manifold purposes resulting in a long and complex terminological history. The investigation of this history has so far been based on the connection between nomenclature and chemical composition. Because resin chemistry and the botanical classification of source plants are connected as well, the investigation of natural resins can be enhanced by adding taxonomy as an additional dimension, providing a more complex and complete picture of resin chemistry and resin use. The Vigani Cabinet, a collection of 300-year-old pharmaceutical and chemical materials owned by Queens’ College, Cambridge (UK), allows doing just that. A wide range of historical literature provides information about contemporary terminology, botanical and geographical origin, manufacture, trade and properties of resinous materials from the 18th century. This contemporary context is a particular feature of the Cabinet, which allows adding a historical dimension to the correlations between terminology, chemical composition and taxonomy. The dissertation thesis presented here provides an investigation of 17 botanical, 80 reference materials and samples from 24 natural resins from the Vigani Cabinet, studying these complex correlations and changes over time. The analytical method employed in this study was gas chromatography-mass spectrometry (GC-MS) with and without methylation with trimethylsulfoniumhydroxide. This technique provided detailed molecular compositions of the studied materials. Analysed botanical samples are taken from Pinaceae, Cupressaceae and Pistacia resins, commerical references from Araucariaceae, Copaifera, Fabaceae, Myroxylon and Burseraceae. Additionally, the soluble fraction of Baltic amber was analysed. Materials from the Vigani Cabinet analysed in this work were labelled as "turpentines", "pix burgundica", "sandaracha", "copaiba", "balsamum peruvianum and tolutanum", "mastiche", "anime", "copal", "elemi", "tacamahaca" and "succinum". Historical nomenclature of natural resins has not always been unequivocally associated with a botanical origin. The availability of natural resins changed throughout the centuries. Lack of knowledge, in particular about resins from over-seas, or adulterations resulting from changing harvesting methods, led to changes in trade names or variations in the composition of products traded under the same name. Generic names were used for resins with similar properties but different botanical (and geographical) origin. The thesis shows that a chemotaxonomic reference system is suitable for the identification of unknown resinous materials, and a number of new insights into the nomenclature of natural resins from the 17th and 18th century is obtained. The study of historical literature contributed in a significant way to the historico-cultural and archeometric research of the samples from the Vigani Cabinet and of natural resins in general and provided a basis for the interpretation of the chemical data from the Vigani samples.:CONTENTS 1 INTRODUCTION 1 1.1 Natural resins in a historical and modern context 1 1.2 The Vigani Cabinet and its historical background 3 1.3 Aim of the thesis - outline 6 2 LITERATURE REVIEW 8 2.1 Gymnosperm resins – conifer resins and products 9 2.1.1 Pinaceae 9 2.1.2 Cupressaceae 17 2.1.3 Araucariaceae 20 2.2 Angiosperm resins I – Fabales 21 2.3 Angiosperm resins II – Sapindales 30 2.3.1 Anacardiaceae 30 2.3.2 Burseraceae 35 2.3.3 Rutaceae 43 2.4 Fossil resins 45 2.5 Summary and research deficits 49 3 EXPERIMENTAL 53 3.1 Coupled gas chromatography and mass spectrometry 53 3.1.1 Materials 53 3.1.2 Sample preparation 54 3.1.3 Instrumentation 54 3.1.4 Data-Evaluation 58 3.2 Fourier transformation infrared spectroscopy 60 3.2.1 Sample preparation 61 3.2.2 Instrumentation 61 3.2.3 Data evaluation 61 4 RESULTS – REFERENCE MATERIALS 62 4.1 Gymnosperm resins – conifer resins and products 62 4.1.1 Pinaceae – Coniferous turpentines 62 4.1.1.1 Phytochemical markers – detection of adulterations 62 4.1.1.2 Aging by heat and light 73 4.1.2 Cupressaceae – Sandarac 80 4.1.3 Araucariaceae – Coniferous copals 88 4.1.4 Discussion 91 4.2 Angiosperm Resins I - Fabales 94 4.2.1 Copaifera – Copaiba balsam 94 4.2.2 Legume copals 102 4.2.3 Myroxylon – Balsam of Tolu and Peru 108 4.2.4 Discussion 117 4.3 Angiosperm resins II - Sapindales 120 4.3.1 Anacardiaceae – Pistacia resins 120 4.3.2 Burseraceae – Elemi, copal and others 127 4.3.3 Discussion 142 4.4 Fossil resins 144 4.4.1 Baltic amber 144 4.4.2 Discussion 153 4.5 Summary and research deficits 155 5 RESULTS – RESINOUS MATERIALS FROM THE VIGANI CABINET 160 5.1 Gymnosperm resins – conifer resins and products 162 5.1.1 1/8 Terebin. Strasb. 163 5.1.2 1/9 Tereb Com 170 5.1.3 1/10 Venice Turpentine 176 5.1.4 1/11 Venic. Turpent. 183 5.1.5 1/13 Tereb E Chio 188 5.1.6 A/23 Pix Burgundica 194 5.1.7 A/26 Sandaracha 203 5.2 Angiosperm resins I - Fabales 210 5.2.1 1/4 Balsam Cipivi 211 5.2.2 A/5 Gum Animi 218 5.2.3 La2/7 Unknown resin 228 5.2.4 1/31 Bals Peruv 230 5.2.5 2/1 Bals Peru 237 5.2.6 Z/17 Balsam Tolutanum 240 5. 3 Angiosperm resins II – Sapindales 245 5.3.1 A/11 Mastiche 246 5.3.2 1/14 Tereb i E Cypri 252 5.3.3 A/21 Gum Copal 258 5.3.4 A/24 [.] Elemi 268 5.3.5 A/22 Tacamahaca 276 5.3.6 Z/1 Tacamahaca 283 5.4 Fossil Resins 287 5.4.1 E/13 Succinum Citrinum 288 5.4.2 E/14 Succinum flavan 295 5.4.3 E/15 Succinum albam 302 5.4.4 E/16 Succinum nigram 307 5.4.5 F/13 L. Gagatis 313 6 CONCLUSIONS 316 7 REFERENCES 324 APPENDIX 365 Investigated materials from the Vigani Cabinet 366 Annotated list of historical literature 367 List of figures 374 List of tables 379 Compound lists 381 Atlas of mass spectra 422 / Naturharze werden schon lange für sehr unterschiedliche Zwecke verwendet. Dies hat zu einer oft komplizierten Terminologie geführt, deren Untersuchung sich bisher auf den Zusammenhang zwischen dem Namen des Harzes und seiner chemischer Zusammensetzung stützte. Letztere ist aber auch mit der botanischer Herkunft und damit der Biochemie der Stammpflanze verknüpft, weshalb man chemotaxonomische Aspekte für die systematische Untersuchung von Naturharzen als zusätzliche Variablen nutzen kann. Dadurch erhält man, wie die gezeigt werden soll, ein vollständigeres und komplexeres Bild der Chemie und Nutzung von Naturharzen. Die hier präsentierte Untersuchung beschäftigt sich mit dem Vigani-Kabinett, einer 300 Jahre alten pharmazeutischen Materialiensammlung, die sich im Queens‘ College, Cambridge (UK), befindet. In der Literatur des ausgehenden 17. und des 18. Jahrhunderts finden sich zahlreiche Informationen zu Terminologie, botanischer und geographischer Herkunft, Verarbeitung, Handel und Eigenschaften von Naturharzen. Dadurch wird die historische Dimension des oben beschriebenen Zusammenhangs zwischen Terminologie, chemischer Zusammensetzung und Taxonomie erfahrbar. In der Arbeit werden 17 botanische Proben, 80 moderne Referenzmaterialien und 24 Proben aus dem Vigani-Kabinett im Hinblick auf diese Zusammenhänge und Veränderungen untersucht.Die chemischen Analysen wurden mit gekoppelter Gaschromatografie-Massenspektrometrie mit und ohne Methylierung mit Trimethylsulfoniumhydroxid durchgeführt. Damit konnte die molekulare Zusammensetzung der Proben detailliert untersucht werden. Die untersuchten botanischen Proben stammten von Pinaceae, Cupressaceae und Pistaciaharzen, kommerzielle Referenzen von Araucariaceae, Copaifera, Fabaceae, Myroxylon und Burseraceaeharzen. Zusätzlich wurde noch die lösliche Fraktion von Baltischem Bernstein untersucht. Die untersuchten Proben aus dem Vigani-Kabinett waren sowohl englisch als auch Latein mit "turpentines", "pix burgundica", "sandaracha", "copaiba", "mastiche", "anime", "copal", "elemi", "tacamahaca", "balsamum peruvianum and tolutanum" und "succinum" beschriftet. Zusammenfassend lässt sich sagen, dass die historische Nomenklatur von Naturharzen nicht immer eindeutig mit ihrem botanischen Ursprung verknüpft war. Zusätzlich veränderte sich die Erhältlichkeit der Harze im Laufe der Jahrhunderte. Durch fehlendes Wissen, insbesondere für Materialien und Pflanzen aus Übersee, oder Verfälschungen aufgrund von veränderten Fördermethoden veränderten sich die Handelsnamen dieser Materialien oder die Zusammensetzung von Materialien, die unter demselben Namen gehandelt wurden. Harze mit ähnlichen Eigenschaften aber unterschiedlichen botanischen (und geographischen) Ursprungs trugen generische Namen. Die Arbeit zeigt jedoch, dass ein chemotaxonomisches Bezugssystem die Identifizierung von unbekannten Harzen ermöglicht, und zeigt eine Reihe neuer Erkenntnisse über die Nomenklatur von Naturharzen des 17. und 18. Jahrhunderts. Die Untersuchung historischer Quellen trug dabei sehr zur Erhellung des historisch-kulturellen und archeometrischen Hintergrundes und zur Interpretation der chemischen Daten der Vigani-Proben bei.:CONTENTS 1 INTRODUCTION 1 1.1 Natural resins in a historical and modern context 1 1.2 The Vigani Cabinet and its historical background 3 1.3 Aim of the thesis - outline 6 2 LITERATURE REVIEW 8 2.1 Gymnosperm resins – conifer resins and products 9 2.1.1 Pinaceae 9 2.1.2 Cupressaceae 17 2.1.3 Araucariaceae 20 2.2 Angiosperm resins I – Fabales 21 2.3 Angiosperm resins II – Sapindales 30 2.3.1 Anacardiaceae 30 2.3.2 Burseraceae 35 2.3.3 Rutaceae 43 2.4 Fossil resins 45 2.5 Summary and research deficits 49 3 EXPERIMENTAL 53 3.1 Coupled gas chromatography and mass spectrometry 53 3.1.1 Materials 53 3.1.2 Sample preparation 54 3.1.3 Instrumentation 54 3.1.4 Data-Evaluation 58 3.2 Fourier transformation infrared spectroscopy 60 3.2.1 Sample preparation 61 3.2.2 Instrumentation 61 3.2.3 Data evaluation 61 4 RESULTS – REFERENCE MATERIALS 62 4.1 Gymnosperm resins – conifer resins and products 62 4.1.1 Pinaceae – Coniferous turpentines 62 4.1.1.1 Phytochemical markers – detection of adulterations 62 4.1.1.2 Aging by heat and light 73 4.1.2 Cupressaceae – Sandarac 80 4.1.3 Araucariaceae – Coniferous copals 88 4.1.4 Discussion 91 4.2 Angiosperm Resins I - Fabales 94 4.2.1 Copaifera – Copaiba balsam 94 4.2.2 Legume copals 102 4.2.3 Myroxylon – Balsam of Tolu and Peru 108 4.2.4 Discussion 117 4.3 Angiosperm resins II - Sapindales 120 4.3.1 Anacardiaceae – Pistacia resins 120 4.3.2 Burseraceae – Elemi, copal and others 127 4.3.3 Discussion 142 4.4 Fossil resins 144 4.4.1 Baltic amber 144 4.4.2 Discussion 153 4.5 Summary and research deficits 155 5 RESULTS – RESINOUS MATERIALS FROM THE VIGANI CABINET 160 5.1 Gymnosperm resins – conifer resins and products 162 5.1.1 1/8 Terebin. Strasb. 163 5.1.2 1/9 Tereb Com 170 5.1.3 1/10 Venice Turpentine 176 5.1.4 1/11 Venic. Turpent. 183 5.1.5 1/13 Tereb E Chio 188 5.1.6 A/23 Pix Burgundica 194 5.1.7 A/26 Sandaracha 203 5.2 Angiosperm resins I - Fabales 210 5.2.1 1/4 Balsam Cipivi 211 5.2.2 A/5 Gum Animi 218 5.2.3 La2/7 Unknown resin 228 5.2.4 1/31 Bals Peruv 230 5.2.5 2/1 Bals Peru 237 5.2.6 Z/17 Balsam Tolutanum 240 5. 3 Angiosperm resins II – Sapindales 245 5.3.1 A/11 Mastiche 246 5.3.2 1/14 Tereb i E Cypri 252 5.3.3 A/21 Gum Copal 258 5.3.4 A/24 [.] Elemi 268 5.3.5 A/22 Tacamahaca 276 5.3.6 Z/1 Tacamahaca 283 5.4 Fossil Resins 287 5.4.1 E/13 Succinum Citrinum 288 5.4.2 E/14 Succinum flavan 295 5.4.3 E/15 Succinum albam 302 5.4.4 E/16 Succinum nigram 307 5.4.5 F/13 L. Gagatis 313 6 CONCLUSIONS 316 7 REFERENCES 324 APPENDIX 365 Investigated materials from the Vigani Cabinet 366 Annotated list of historical literature 367 List of figures 374 List of tables 379 Compound lists 381 Atlas of mass spectra 422
153

Assessment of polycyclic aromatic hydrocarbon (PAHs) and heavy metals in the vicinity of coal power plants in South Africa

Okedeyi, Olumuyiwa Olakunle 12 November 2013 (has links)
The distribution and potential sources of 15 polycyclic aromatic hydrocarbons (PAHs) in soils and Digitaria eriantha in the vicinity of three South African coal-fired power plants, Matla, Lethabo and Rooiwal were determined by gas chromatography–mass spectrometry. An ultrasonic assisted dispersive liquid-liquid microextraction (UA-DLLME) method was developed for the extraction of polycyclic aromatic hydrocarbon in soil, followed by determination using gas chromatography mass spectrometry. The study showed that an extraction protocol based on acetonitrile as dispersive solvent and C2H2Cl2 as extracting solvent, gave extraction efficiencies comparable to conventional soxhlet extraction for soil samples. The extraction time using ultrasonication and the volume of the extraction solvent was also investigated. Using a certified reference material soil (CRM), the extraction efficiency of UA-DLLME ranged from 64 to 86% in comparison with the Soxhlet result of 73 to 95%. In comparison with the real sample, the CRM result did not show a significant difference at 95% C.I. The UA-DLLME proved to be a convenient, rapid, cost-effective and greener sample preparation approach for the determination of PAHs in soil samples. PAH compound ratios such as phenanthrene/phenanthrene + anthracene (Phen/ Phen + Anth) were used to provide a reliable estimation of emission sources. The total PAH concentration in the soils around three power plants ranged from 9.73 to 61.24 μg g−1, a range above the Agency for Toxic Substances and Disease Registry levels of 1.0 μg g−1 for a significantly contaminated site. Calculated values of the Phen/Phen + Anth ratio were 0.48±0.08, 0.44±0.05, and 0.38+0.04 for Matla, Lethabo and Rooiwal, respectively. The flouranthene/fluoranthene + pyrene (Flan/ Flan + Pyr) levels were found to be 0.49±0.03 for Matla, 0.44±0.05 for Lethabo, and 0.53±0.08 for Rooiwal. Such values indicate a xx pyrolytic source of PAHs. Higher molecular weight PAHs (five to six rings) were predominant, suggesting coal combustion sources. The carcinogenic potency B[a]P equivalent concentration (B[a] Peq) at the three power plants ranged from 3.61 to 25.25, indicating a high carcinogenic burden. The highest (B[a] Peq) was found in samples collected around Matla power station. It can, therefore, be concluded that the soils were contaminated with PAHs originating from coal-fired power stations. Nine metals (Fe, Cu, Mn, Ni, Cd, Pb, Hg, Cr and Zn) were analysed in soil and the Digitaria eriantha plant around three coal power plants (Matla, Lethabo and Rooiwal), using ICP-OES and GFAAS. The total metal concentration in soil ranged from 0.05 ± 0.02 to 1835.70 ± 70 μg g-1, 0.08 ± 0.05 to 1743.90 ± 29 μg g-1 and 0.07 ± 0.04 to 1735.20 ± 91 μg g-1 at Matla, Lethabo and Rooiwal respectively. The total metal concentration in the plant (Digitaria eriantha) ranged from 0.005 ± 0.003 to 534.87 ± 43 μg g-1 at Matla, 0.002 ± 0.001 to 400.49 ± 269 μg g-1 at Lethabo and 0.002 ± 0.001 to 426.91 ± 201 μg g-1 at Rooiwal. The accumulation factor (A) of less than 1 (i.e. 0.003 to 0.37) at power plants indicates a low transfer of metal from soil to plant (excluder). The enrichment factor values obtained (2.4 – 5) indicate that the soils are moderately enriched, with the exception of Pb that had significant enrichment of 20. The Geo-accumulation Index values of metals indicate that the soils are moderately polluted (0.005 – 0.65), except for Pb that showed moderate to strong pollution (1.74 – 2.53). / Chemistry / D. Phil. (Chemistry)
154

Soil Organic Matter Composition Impacts its Degradability and Association with Soil Minerals

Clemente, Joyce S. 11 December 2012 (has links)
Soil organic matter (OM) is a complex mixture of compounds, mainly derived from plants and microbes at various states of decay. It is part of the global carbon cycle and is important for maintaining soil quality. OM protection is mainly attributed to its association with minerals. However, clay minerals preferentially sorb specific OM structures, and clay sorption sites become saturated as OM concentrations increase. Therefore, it is important to examine how OM structures influence their association with soil minerals, and to characterize other protection mechanisms. Several techniques, which provide complementary information, were combined to investigate OM composition: Biomarker (lignin phenol, cutin-OH acid, and lipid) analysis, using gas chromatography/mass spectrometry; solid-state 13C nuclear magnetic resonance (NMR) spectroscopy; and an emerging method, solution-state 1H NMR spectroscopy. OM composition of sand-, silt-, clay-size, and light fractions of Canadian soils were compared. It was found that microbial-derived and aliphatic structures accumulated in clay-size fractions, and lignin phenols in silt-size fractions may be protected from further oxidation. Therefore, OM protection through association with minerals may be structure-specific. OM in soils amended with maize leaves, stems, and roots from a biodegradation study were also examined. Over time, lignin phenol composition, and oxidation; and aliphatic structure contribution changed less in soils amended with leaves compared to soils amended with stems and roots. Compared to soils amended with leaves and stems, amendment with roots may have promoted the more efficient formation of microbial-derived OM. Therefore, plant chemistry influenced soil OM turnover. Synthetic OM-clay complexes and soil mineral fractions were used to investigate lignin protection from chemical oxidation. Coating with dodecanoic acid protected lignin from chemical oxidation, and overlying vegetation determined the relative resistance of lignin phenols in clay-size fractions from chemical oxidation. Therefore, additional protection from chemical oxidation may be attributed to OM composition and interactions between OM structures sorbed to clay minerals. Overall, these studies suggest that while association with minerals is important, OM turnover is also influenced by vegetation, and protection through association with clay minerals was modified by OM structure composition. As well, OM-OM interaction is a potential mechanism that protects soil OM from degradation.
155

Soil Organic Matter Composition Impacts its Degradability and Association with Soil Minerals

Clemente, Joyce S. 11 December 2012 (has links)
Soil organic matter (OM) is a complex mixture of compounds, mainly derived from plants and microbes at various states of decay. It is part of the global carbon cycle and is important for maintaining soil quality. OM protection is mainly attributed to its association with minerals. However, clay minerals preferentially sorb specific OM structures, and clay sorption sites become saturated as OM concentrations increase. Therefore, it is important to examine how OM structures influence their association with soil minerals, and to characterize other protection mechanisms. Several techniques, which provide complementary information, were combined to investigate OM composition: Biomarker (lignin phenol, cutin-OH acid, and lipid) analysis, using gas chromatography/mass spectrometry; solid-state 13C nuclear magnetic resonance (NMR) spectroscopy; and an emerging method, solution-state 1H NMR spectroscopy. OM composition of sand-, silt-, clay-size, and light fractions of Canadian soils were compared. It was found that microbial-derived and aliphatic structures accumulated in clay-size fractions, and lignin phenols in silt-size fractions may be protected from further oxidation. Therefore, OM protection through association with minerals may be structure-specific. OM in soils amended with maize leaves, stems, and roots from a biodegradation study were also examined. Over time, lignin phenol composition, and oxidation; and aliphatic structure contribution changed less in soils amended with leaves compared to soils amended with stems and roots. Compared to soils amended with leaves and stems, amendment with roots may have promoted the more efficient formation of microbial-derived OM. Therefore, plant chemistry influenced soil OM turnover. Synthetic OM-clay complexes and soil mineral fractions were used to investigate lignin protection from chemical oxidation. Coating with dodecanoic acid protected lignin from chemical oxidation, and overlying vegetation determined the relative resistance of lignin phenols in clay-size fractions from chemical oxidation. Therefore, additional protection from chemical oxidation may be attributed to OM composition and interactions between OM structures sorbed to clay minerals. Overall, these studies suggest that while association with minerals is important, OM turnover is also influenced by vegetation, and protection through association with clay minerals was modified by OM structure composition. As well, OM-OM interaction is a potential mechanism that protects soil OM from degradation.
156

Assessment of polycyclic aromatic hydrocarbon (PAHs) and heavy metals in the vicinity of coal power plants in South Africa

Okedeyi, Olumuyiwa Olakunle 11 1900 (has links)
The distribution and potential sources of 15 polycyclic aromatic hydrocarbons (PAHs) in soils and Digitaria eriantha in the vicinity of three South African coal-fired power plants, Matla, Lethabo and Rooiwal were determined by gas chromatography–mass spectrometry. An ultrasonic assisted dispersive liquid-liquid microextraction (UA-DLLME) method was developed for the extraction of polycyclic aromatic hydrocarbon in soil, followed by determination using gas chromatography mass spectrometry. The study showed that an extraction protocol based on acetonitrile as dispersive solvent and C2H2Cl2 as extracting solvent, gave extraction efficiencies comparable to conventional soxhlet extraction for soil samples. The extraction time using ultrasonication and the volume of the extraction solvent was also investigated. Using a certified reference material soil (CRM), the extraction efficiency of UA-DLLME ranged from 64 to 86% in comparison with the Soxhlet result of 73 to 95%. In comparison with the real sample, the CRM result did not show a significant difference at 95% C.I. The UA-DLLME proved to be a convenient, rapid, cost-effective and greener sample preparation approach for the determination of PAHs in soil samples. PAH compound ratios such as phenanthrene/phenanthrene + anthracene (Phen/ Phen + Anth) were used to provide a reliable estimation of emission sources. The total PAH concentration in the soils around three power plants ranged from 9.73 to 61.24 μg g−1, a range above the Agency for Toxic Substances and Disease Registry levels of 1.0 μg g−1 for a significantly contaminated site. Calculated values of the Phen/Phen + Anth ratio were 0.48±0.08, 0.44±0.05, and 0.38+0.04 for Matla, Lethabo and Rooiwal, respectively. The flouranthene/fluoranthene + pyrene (Flan/ Flan + Pyr) levels were found to be 0.49±0.03 for Matla, 0.44±0.05 for Lethabo, and 0.53±0.08 for Rooiwal. Such values indicate a xx pyrolytic source of PAHs. Higher molecular weight PAHs (five to six rings) were predominant, suggesting coal combustion sources. The carcinogenic potency B[a]P equivalent concentration (B[a] Peq) at the three power plants ranged from 3.61 to 25.25, indicating a high carcinogenic burden. The highest (B[a] Peq) was found in samples collected around Matla power station. It can, therefore, be concluded that the soils were contaminated with PAHs originating from coal-fired power stations. Nine metals (Fe, Cu, Mn, Ni, Cd, Pb, Hg, Cr and Zn) were analysed in soil and the Digitaria eriantha plant around three coal power plants (Matla, Lethabo and Rooiwal), using ICP-OES and GFAAS. The total metal concentration in soil ranged from 0.05 ± 0.02 to 1835.70 ± 70 μg g-1, 0.08 ± 0.05 to 1743.90 ± 29 μg g-1 and 0.07 ± 0.04 to 1735.20 ± 91 μg g-1 at Matla, Lethabo and Rooiwal respectively. The total metal concentration in the plant (Digitaria eriantha) ranged from 0.005 ± 0.003 to 534.87 ± 43 μg g-1 at Matla, 0.002 ± 0.001 to 400.49 ± 269 μg g-1 at Lethabo and 0.002 ± 0.001 to 426.91 ± 201 μg g-1 at Rooiwal. The accumulation factor (A) of less than 1 (i.e. 0.003 to 0.37) at power plants indicates a low transfer of metal from soil to plant (excluder). The enrichment factor values obtained (2.4 – 5) indicate that the soils are moderately enriched, with the exception of Pb that had significant enrichment of 20. The Geo-accumulation Index values of metals indicate that the soils are moderately polluted (0.005 – 0.65), except for Pb that showed moderate to strong pollution (1.74 – 2.53). / Chemistry / D. Phil. (Chemistry)

Page generated in 0.1143 seconds