• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Steam Enhanced Calcination for CO2 Capture with CaO

Champagne, Scott 16 April 2014 (has links)
Carbon capture and storage technologies are necessary to start lowering greenhouse gas emissions while continuing to utilize existing thermal power generation infrastructure. Calcium looping is a promising technology based on cyclic calcination/carbonation reactions which utilizes limestone as a sorbent. Steam is present in combustion flue gas and in the calciner used for sorbent regeneration. The effect of steam during calcination on sorbent performance has not been extensively studied in the literature. Here, experiments were conducted using a thermogravimetric analyzer (TGA) and subsequently a dual-fluidized bed pilot plant to determine the effect of steam injection during calcination on sorbent reactivity during carbonation. In a TGA, various levels of steam (0-40% vol.) were injected during sorbent regeneration throughout 15 calcination/carbonation cycles. All concentrations of steam were found to increase sorbent reactivity during carbonation. A level of 15% steam during calcination had the largest impact. Steam changes the morphology of the sorbent during calcination, likely by shifting the pore volume to larger pores, resulting in a structure which has an increased carrying capacity. This effect was then examined at the pilot scale to determine if the phase contacting patterns and solids heat-up rates in a fluidized bed were factors. Three levels of steam (0%, 15%, 65%) were injected during sorbent regeneration throughout 5 hours of steady state operation. Again, all levels of steam were found to increase sorbent reactivity and reduce the required sorbent make-up rate with the best performance seen at 65% steam.
2

Steam Enhanced Calcination for CO2 Capture with CaO

Champagne, Scott January 2014 (has links)
Carbon capture and storage technologies are necessary to start lowering greenhouse gas emissions while continuing to utilize existing thermal power generation infrastructure. Calcium looping is a promising technology based on cyclic calcination/carbonation reactions which utilizes limestone as a sorbent. Steam is present in combustion flue gas and in the calciner used for sorbent regeneration. The effect of steam during calcination on sorbent performance has not been extensively studied in the literature. Here, experiments were conducted using a thermogravimetric analyzer (TGA) and subsequently a dual-fluidized bed pilot plant to determine the effect of steam injection during calcination on sorbent reactivity during carbonation. In a TGA, various levels of steam (0-40% vol.) were injected during sorbent regeneration throughout 15 calcination/carbonation cycles. All concentrations of steam were found to increase sorbent reactivity during carbonation. A level of 15% steam during calcination had the largest impact. Steam changes the morphology of the sorbent during calcination, likely by shifting the pore volume to larger pores, resulting in a structure which has an increased carrying capacity. This effect was then examined at the pilot scale to determine if the phase contacting patterns and solids heat-up rates in a fluidized bed were factors. Three levels of steam (0%, 15%, 65%) were injected during sorbent regeneration throughout 5 hours of steady state operation. Again, all levels of steam were found to increase sorbent reactivity and reduce the required sorbent make-up rate with the best performance seen at 65% steam.
3

The Politics of Researching Carbon Trading in Australia

Spash, Clive L. January 2014 (has links) (PDF)
This paper explores the conflicts of interest present in science policy and how claims being made for evidence based science can be used to suppress critical social science research. The specific case presented concerns the attempts to ban and censor my work criticising the economics of carbon emissions trading while I was working for the Commonwealth Scientific Industrial Research Organisation (CSIRO) in Australia. The role of management and the Science Minister are documented through their own public statements. The case raises general issues about the role of epistemic communities in the production of knowledge, the potential for manipulation of information under the guise of quality control and the problems created by claiming a fact-value dichotomy in the science-policy interface. The implications go well beyond just climate change research and challenge how public policy is being formulated in modern industrial societies where scientific knowledge and corporate interests are closely intertwined. (author's abstract) / Series: SRE - Discussion Papers
4

Hypoxic Incubation Chamber

Helfrich, Simone Lisette, Jones, Makenzie Nicole 01 November 2022 (has links) (PDF)
This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the chamber design and the control system. These concepts were compared against developed engineering specs and were evaluated amongst the team and sponsor. From there, a detailed CAD model was developed and utilized to design the structure and was used as a guide for manufacturing. The control system was prototyped on breadboards via Arduino. This breadboard testing served as the map to solder perf boards, which are utilized as the final structure for the control system. Once all parts were sourced, machined, and assembled for the final chamber and the control system, these subassemblies were integrated together with a regulated gas system via various tubing. The integrated final design underwent a variety of testing to validate the incubator design and control system. Testing was performed throughout the course of this project: material testing, gas leak testing, cell test, temperature control test, and gas control system optimization; however, the most important of these tests were those relating to the environmental control of the incubator. These tests confirmed whether the incubator design was functional as a practical incubator. Testing confirmed that O2 and temperature control maintained in spec over a short and long period of time while maintaining a humid environment. CO2 control optimization had more complications than the O2 hypoxia system. During testing CO2 concentration would typically overshoot the set point, likely due to a lack of precise control over the gas flow. CO2 variability was reduced due to optimization in the code, but not fully mitigated. Future iterations of this chamber could improve upon the CO2 control and streamline the user interface.

Page generated in 0.0611 seconds