• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resistive MHD Simulations of Laminar Round Jets with Application to Magnetic Nozzle Flows

Araya, Daniel 2011 December 1900 (has links)
This thesis investigates fundamental flows of resistive magnetohydrodynamics (MHD) by a new numerical tool based on the gas-kinetic method. The motivation for this work stems from the need to analyze the mechanisms of plasma detachment in the exhaust plume of the magnetoplasma rocket known as VASIMRR. This rocket has great potential for reducing the travel time for deep space exploration missions. However, it is very difficult to investigate detachment in ground-based experiments because this large-scale device can fully function only in a vacuum. This difficulty makes computational analysis and modeling an important part of the design and testing process. A parallelized Boltzmann-BGK continuum flow solver is expanded to include resistive MHD physics. This new code is validated against known solutions to MHD channel flows and new results are presented for simulations of a laminar round jet subject to a constant applied magnetic field as well as the diverging magnetic field of a current loop. Additionally, a parametric map is presented that outlines appropriate conditions required when using a fluid model for magnetic nozzle flows. The work of this thesis serves as an introductory step to developing a robust numerical ow solver capable of simulating magnetic nozzle flows and other plasmas that cannot be easily replicated in ground facilities.
2

Compressible Shear Flow Transition and Turbulence: Enhancement of GKM Numerical Scheme and Simulation/Analysis of Pressure Effects on Flow Stabilization

Kumar, Gaurav 1984- 14 March 2013 (has links)
Despite significant advancements in the understanding of fluid flows, combustion and material technologies, hypersonic flight still presents numerous technological challenges. In hypersonic vehicles turbulence is critical in controlling heat generation in the boundary layer, mixing inside the combustor, generation of acoustic noise, and mass flow in the intake. The study of turbulence in highly compressible flows is challenging compared to incompressible due to a drastic change in the behavior of pressure and a relaxation of the incompressibility constraint. In addition fluid flow inside a flight vehicle is complicated by wall-effects, heat generation and complex boundary conditions. Homogeneous shear flow contains most of the relevant physics of boundary and mixing layers without the aforementioned complicating effects. In this work we aim to understand and characterize the role of pressure, velocity-pressure interaction, velocity-thermodynamics interaction in the late-stage transition-to-turbulence regime in a high speed shear dominated flow by studying the evolution of perturbations in in a high Mach number homogeneous shear flow. We use a modal-analysis based approach towards understanding the statistical behavior of turbulence. Individual Fourier waves constituting the initial flow field are studied in isolation and in combination to understand collective statistical behavior. We demonstrate proof of concept of novel acoustic based strategies for controlling the onset of turbulence. Towards this goal we perform direct numerical simulations (DNS) in three studies: (a) development and evaluation of gas kinetic based numerical tool for DNS of compressible turbulence, and perform detailed evaluation of the efficacy of different interpolation schemes in capturing solenoidal and dilatational quantities, (b) modal investigation in the behavior of pressure and isolation of linear, non-linear, inertial and pressure actions, and (c) modal investigation in the possible acoustic based control strategies in homogeneously sheared compressible flows. The findings help to understand the manifestation of the effects of compressibility on transition and turbulence via the velocity-pressure interactions and the action of individual waves. The present study helps towards the design of control mechanisms for compressible turbulence and the development of physically consistent pressure strain correlation models.

Page generated in 0.0477 seconds