Spelling suggestions: "subject:"sas uptake"" "subject:"sas yptake""
1 |
An Automated Script to Acquire Gas Uptake Data from Molecular Simulation of Metal Organic Frameworksvan Rijswijk, David G. 18 April 2012 (has links)
Attention worldwide has been placed towards reducing the global carbon footprint. To this end the scientific community has been involved in improving many of the available methods of carbon capture and storage (CCS). CCS involves scrubbing flue gases of greenhouse gases and safely storing them deep underground. MOFs, a
family of functionally tunable three dimensional nanoporous frameworks, have been
shown to adsorb gases with great selectivity and capacity. Investigating these frameworks using computational simulations, although faster than in-lab synthetic methods, involves a tedious and meticulous input preparation process which is subject to human error. This thesis presents Dave's Occupancy Automation Package (DOAP),a software which provides a means to automatically determine the gas uptake of many three dimensional frameworks. By providing atomic coordinates for a unit simulation cell, the software acts to performs the necessary calculations to construct and execute a Grand Canonical Monte Carlo simulation, determining the gas uptake in a metal organic framework. Additionally an analysis of different convergence assessment tests for describing the end point of the GCMC simulation is presented.
|
2 |
An Automated Script to Acquire Gas Uptake Data from Molecular Simulation of Metal Organic Frameworksvan Rijswijk, David G. 18 April 2012 (has links)
Attention worldwide has been placed towards reducing the global carbon footprint. To this end the scientific community has been involved in improving many of the available methods of carbon capture and storage (CCS). CCS involves scrubbing flue gases of greenhouse gases and safely storing them deep underground. MOFs, a
family of functionally tunable three dimensional nanoporous frameworks, have been
shown to adsorb gases with great selectivity and capacity. Investigating these frameworks using computational simulations, although faster than in-lab synthetic methods, involves a tedious and meticulous input preparation process which is subject to human error. This thesis presents Dave's Occupancy Automation Package (DOAP),a software which provides a means to automatically determine the gas uptake of many three dimensional frameworks. By providing atomic coordinates for a unit simulation cell, the software acts to performs the necessary calculations to construct and execute a Grand Canonical Monte Carlo simulation, determining the gas uptake in a metal organic framework. Additionally an analysis of different convergence assessment tests for describing the end point of the GCMC simulation is presented.
|
3 |
An Automated Script to Acquire Gas Uptake Data from Molecular Simulation of Metal Organic Frameworksvan Rijswijk, David G. January 2012 (has links)
Attention worldwide has been placed towards reducing the global carbon footprint. To this end the scientific community has been involved in improving many of the available methods of carbon capture and storage (CCS). CCS involves scrubbing flue gases of greenhouse gases and safely storing them deep underground. MOFs, a
family of functionally tunable three dimensional nanoporous frameworks, have been
shown to adsorb gases with great selectivity and capacity. Investigating these frameworks using computational simulations, although faster than in-lab synthetic methods, involves a tedious and meticulous input preparation process which is subject to human error. This thesis presents Dave's Occupancy Automation Package (DOAP),a software which provides a means to automatically determine the gas uptake of many three dimensional frameworks. By providing atomic coordinates for a unit simulation cell, the software acts to performs the necessary calculations to construct and execute a Grand Canonical Monte Carlo simulation, determining the gas uptake in a metal organic framework. Additionally an analysis of different convergence assessment tests for describing the end point of the GCMC simulation is presented.
|
4 |
Assembly of metal–organic polyhedra into highly porous frameworks for ethene deliveryStoeck, Ulrich, Senkoska, Irena, Bon, Volodymyr, Krause, Simon, Kaskel, Stefan 19 December 2019 (has links)
Two new mesoporous metal–organic frameworks (DUT-75 and DUT-76) with exceptional ethene uptake were obtained using carbazole dicarboxylate based metal–organic polyhedra as supermolecular building blocks. The compounds have a total pore volume of 1.84 and 3.25 cm³ gˉ¹ and a specific BET surface area of 4081 and 6344 m² gˉ¹, respectively, and high gas uptake at room temperature and high pressure.
|
Page generated in 0.0476 seconds